Interface Fresnel Zone for Reflected Waves from a Curved Interface in Anisotropic Media

Author(s):  
N. Favretto-Cristini ◽  
B. Ursin ◽  
P. Cristini
Geophysics ◽  
2014 ◽  
Vol 79 (5) ◽  
pp. C123-C134 ◽  
Author(s):  
Bjørn Ursin ◽  
Nathalie Favretto-Cristini ◽  
Paul Cristini

Geophysics ◽  
2004 ◽  
Vol 69 (3) ◽  
pp. 653-663 ◽  
Author(s):  
Jesper Spetzler ◽  
Roel Snieder

In seismic imaging experiments, it is common to use a geometric ray theory that is an asymptotic solution of the wave equation in the high‐frequency limit. Consequently, it is assumed that waves propagate along infinitely narrow lines through space, called rays, that join the source and receiver. In reality, recorded waves have a finite‐frequency content. The band limitation of waves implies that the propagation of waves is extended to a finite volume of space around the geometrical ray path. This volume is called the Fresnel volume. In this tutorial, we introduce the physics of the Fresnel volume and we present a solution of the wave equation that accounts for the band limitation of waves. The finite‐frequency wave theory specifies sensitivity kernels that linearly relate the traveltime and amplitude of band‐limited transmitted and reflected waves to slowness variations in the earth. The Fresnel zone and the finite‐frequency sensitivity kernels are closely connected through the concept of constructive interference of waves. The finite‐frequency wave theory leads to the counterintuitive result that a pointlike velocity perturbation placed on the geometric ray in three dimensions does not cause a perturbation of the phase of the wavefield. Also, it turns out that Fermat's theorem in the context of geometric ray theory is a special case of the finite‐frequency wave theory in the limit of infinite frequency. Last, we address the misconception that the width of the Fresnel volume limits the resolution in imaging experiments.


Author(s):  
Bjørn Ursin ◽  
Nathalie Favretto-Cristini ◽  
Paul Cristini

Summary It is well known that seismic data that have been recorded in complex geological environments must be compensated for geometrical spreading before AVO/AVA analysis, in order to avoid erroneous imaging interpretation. By investigating analytically both the effect of the geometrical spreading and the effect of the reflector curvature on amplitude and phase changes for reflected and transmitted waves between anisotropic media, using ray theory, we show that these data should be compensated for interface effects as well. In order to gain insight more specifically in the focusing effect of the interface, the special case of homogeneous isotropic media separated by a curved interface of syncline type is discussed and compared to the case of a plane interface. 3D numerical simulations of wave reflection from curved interfaces using a Spectral-Element Method validate our analytical derivations. In particular, numerical seismograms obtained at a vertical receiver array highlight that the effect of interface curvature on the reflected events is much more pronounced in a restricted area associated with the existence of caustics, which is consistent with our analytical predictions. Moreover, comparisons between the numerical and the analytical results confirm the fact that using plane-wave reflection coefficients without correction for the interface effect may lead to wrong interpretation of AVA/AVO analysis.


Sign in / Sign up

Export Citation Format

Share Document