Combined Gravity and Seismic Measurements for Mapping a Buried Tectonic Valley in Western Sweden

Author(s):  
N. Juhojuntti ◽  
S. Aaro ◽  
J. Jönberger ◽  
O. Larsson
Keyword(s):  
1985 ◽  
Vol 23 (3) ◽  
pp. 425
Author(s):  
C.-E. Lund ◽  
C. Juhlin ◽  
T. Andersson ◽  
H. Palm ◽  
R. Bödvarsson
Keyword(s):  

1995 ◽  
Author(s):  
Brian E. Hornby ◽  
Douglas E. Miller ◽  
Cengiz Esmersoy ◽  
Philip A. F. Christie

Geophysics ◽  
2013 ◽  
Vol 78 (3) ◽  
pp. V87-V100 ◽  
Author(s):  
Caglar Yardim ◽  
Peter Gerstoft ◽  
Zoi-Heleni Michalopoulou

Sequential Bayesian techniques enable tracking of evolving geophysical parameters via sequential observations. They provide a formulation in which the geophysical parameters that characterize dynamic, nonstationary processes are continuously estimated as new data become available. This is done by using prediction from previous estimates of geophysical parameters, updates stemming from physical and statistical models that relate seismic measurements to the unknown geophysical parameters. In addition, these techniques provide the evolving uncertainty in the estimates in the form of posterior probability density functions. In addition to the particle filters (PFs), extended, unscented, and ensemble Kalman filters (EnKFs) were evaluated. The filters were compared via reflector and nonvolcanic tremor tracking examples. Because there are numerous geophysical problems in which the environmental model itself is not known or evolves with time, the concept of model selection and its filtering implementation were introduced. A multiple model PF was then used to track an unknown number of reflectors from seismic interferometry data. We found that when the equations that define the geophysical problem are strongly nonlinear, a PF was needed. The PF outperformed all Kalman filter variants, especially in low signal-to-noise ratio tremor cases. However, PFs are computationally expensive. The EnKF is most appropriate when the number of parameters is large. Because each technique is ideal under different conditions, they complement each other and provide a useful set of techniques for solving sequential geophysical inversion problems.


1974 ◽  
Vol 4 (2) ◽  
pp. 123-140 ◽  
Author(s):  
M. P. Hochstein ◽  
F. J. Davey
Keyword(s):  

2021 ◽  
Author(s):  
Christopher Juhlin ◽  
Bjarne Almqvist ◽  
Mark Anderson ◽  
Mark Dopson ◽  
Iwona Klonowska ◽  
...  

<p>COSC investigations and drilling activities are focused in the Åre-Mörsil area (Sweden) of central Scandinavia. COSC-2 was drilled with nearly 100% core recovery in 2020 to 2.276 km depth with drilling ongoing from mid-April to early August. Drilling targets for COSC-2 included (1) the highly conductive Alum shale, (2) the Caledonian décollement, the major detachment that separates the Caledonian allochthons from the autochthonous basement of the Fennoscandian Shield, and (3) the strong seismic reflectors in the Precambrian basement.</p><p>Combined seismic, magnetotelluric (MT) and magnetic data were used to site the COSC-2 borehole about 20 km east-southeast of COSC-1. Based on these data it was predicted that the uppermost, tectonic occurrence of Cambrian Alum shale would be penetrated at about 800 m, the main décollement in Alum shale at its stratigraphic level at about 1200 m and the uppermost high amplitude basement reflector at about 1600 m. Paleozoic turbidites and greywackes were expected to be drilled down to 800 m depth. Below this depth, Ordovician limestone and shale with imbricates of Alum shale were interpreted to be present. Directly below the main décollement, magnetite rich Precambrian basement was expected to be encountered with a composition similar to that of magnetic granitic rocks found east of the Caledonian Front. The actual depths of the main contacts turned out to agree very well with the predictions based on the geophysical data. However, the geology below the uppermost occurrence of Alum shale is quite different from the expected model. Alum shale was only clearly encountered as a highly deformed, about 30 m thick unit, starting at about 790 m. Between about 820 and 1200 m, preliminary interpretations are that the rocks mainly consist of Neo-Proterozoic to Early Cambrian tuffs. Further below, Precambrian porphyries are present. The high amplitude reflections within the Precambrian sequence appear to be generated by dolerite sheets with the uppermost top penetrated at about 1600 m. Several deformed sheets of dolerite may be present down to about 1930 m. Below this depth the rocks are again porphyries.</p><p>A preliminary conclusion concerning the tectonic model is that the main décollement is at about 800 m and not at 1200 m. Also the thickness of the lowermost Cambrian/uppermost Neoproterozoic sediments on top of the basement is much greater than expected (hundreds of meters instead of tens of meters) and likely to have been thickened tectonically. Detailed studies are required to assess the actual importance of the “main décollement” and the degree, type and age of deformation in its footwall. We can also conclude that the Precambrian basement is very similar to the Dala porphyries succession that are typically present farther south.</p><p>An extensive set of downhole logging data was acquired directly after drilling. Borehole seismic measurements in 2021 will help to define and correlate seismic boundaries with lithology and structures in the core. Unfortunately, work for describing the geology of the drill core in detail is still on hold due to Covid-19.</p>


2021 ◽  
Author(s):  
Antoine Guillemot ◽  
Alec Van Herwijnen ◽  
Laurent Baillet ◽  
Eric Larose

<p>Seismic noise correlation is a broadly used method to monitor the subsurface, in order to detect physical processes into the surveyed medium such changes in rigidity, fluid injection or cracking <sup>(1)</sup>. The influence of several environmental variables on measured seismic observables were studied, such as temperature, groundwater level fluctuations, and freeze-thawing cycles <sup>(2)</sup>. In mountainous, cold temperate and polar sites, the presence of a snowcover can also affect relative seismic velocity changes (dV/V), but this relation is relatively poorly documented and ambiguous <sup>(3)(4)</sup>. In this study, we analyzed raw seismic recordings from a snowy flat field site located above Davos (Switzerland), during one entire winter season (from December 2018 to June 2019). Our goal was to better understand the effect of snowfall and snowmelt events on dV/V measurements through both seismic and meteorological instrumentation.</p><p>We identified three snowfall events with a substantial response of dV/V measurements (drops of several percent between 15 and 25 Hz), suggesting a detectable change in elastic properties of the medium due to the additional fresh snow.</p><p>To better interpret the measurements, we used a physical model to compute frequency dependent changes in the Rayleigh wave velocity computed before and after the events. Elastic parameters of the ground subsurface were obtained from a seismic refraction survey, whereas snow cover properties were obtained from the snow cover model SNOWPACK. The decrease in dV/V due to a snowfall were well reproduced, with the same order of magnitude than observed values, confirming the importance of the effect of fresh and dry snow on seismic measurements.</p><p>We also observed a decrease in dV/V with snowmelt periods, but we were not able to reproduce those changes with our model. Overall, our results highlight the effect of the snowcover on seismic measurements, but more work is needed to accurately model this response, in particular for the presence of liquid water in the snowcover.</p><p> </p><p><strong>References</strong></p><ul><li>(1) Larose, E., Carrière, S., Voisin, C., Bottelin, P., Baillet, L., Guéguen, P., Walter, F., et al. (2015) Environmental seismology: What can we learn on earth surface processes with ambient noise? Journal of Applied Geophysics, <strong>116</strong>, 62–74. doi:10.1016/j.jappgeo.2015.02.001</li> <li>(2) Le Breton, M., Larose, É., Baillet, L., Bontemps, N. & Guillemot, A. (2020) Landslide Monitoring Using Seismic Ambient Noise Interferometry: Challenges and Applications. Earth-Science Reviews</li> <li>(3) Hotovec‐Ellis, A.J., Gomberg, J., Vidale, J.E. & Creager, K.C. (2014) A continuous record of intereruption velocity change at Mount St. Helens from coda wave interferometry. Journal of Geophysical Research: Solid Earth, <strong>119</strong>, 2199–2214. doi:10.1002/2013JB010742</li> <li>(4) Wang, Q.-Y., Brenguier, F., Campillo, M., Lecointre, A., Takeda, T. & Aoki, Y. (2017) Seasonal Crustal Seismic Velocity Changes Throughout Japan. Journal of Geophysical Research: Solid Earth, <strong>122</strong>, 7987–8002. doi:10.1002/2017JB014307</li> </ul>


Sign in / Sign up

Export Citation Format

Share Document