Geophysical signal processing using sequential Bayesian techniques

Geophysics ◽  
2013 ◽  
Vol 78 (3) ◽  
pp. V87-V100 ◽  
Author(s):  
Caglar Yardim ◽  
Peter Gerstoft ◽  
Zoi-Heleni Michalopoulou

Sequential Bayesian techniques enable tracking of evolving geophysical parameters via sequential observations. They provide a formulation in which the geophysical parameters that characterize dynamic, nonstationary processes are continuously estimated as new data become available. This is done by using prediction from previous estimates of geophysical parameters, updates stemming from physical and statistical models that relate seismic measurements to the unknown geophysical parameters. In addition, these techniques provide the evolving uncertainty in the estimates in the form of posterior probability density functions. In addition to the particle filters (PFs), extended, unscented, and ensemble Kalman filters (EnKFs) were evaluated. The filters were compared via reflector and nonvolcanic tremor tracking examples. Because there are numerous geophysical problems in which the environmental model itself is not known or evolves with time, the concept of model selection and its filtering implementation were introduced. A multiple model PF was then used to track an unknown number of reflectors from seismic interferometry data. We found that when the equations that define the geophysical problem are strongly nonlinear, a PF was needed. The PF outperformed all Kalman filter variants, especially in low signal-to-noise ratio tremor cases. However, PFs are computationally expensive. The EnKF is most appropriate when the number of parameters is large. Because each technique is ideal under different conditions, they complement each other and provide a useful set of techniques for solving sequential geophysical inversion problems.

2013 ◽  
Vol 807-809 ◽  
pp. 1570-1574 ◽  
Author(s):  
Hai Dong Yang ◽  
Dong Guo Shao ◽  
Bi Yu Liu

Pollution point source identification for the non-shore emission which is the main form of sudden water pollution incident is considered in this paper. Firstly, the source traceability of sudden water pollution accidents is taken as the Bayesian estimation problem; secondly, the posterior probability distribution of the source's parameters are deduced; thirdly, the marginal posterior probability density is obtained by using a new traceability method; finally, this proposed method is compared with Bayesian-MCMC by numerical experiments. The conclusions are as following: the new traceability method can reduce the iterations, improve the recognition accuracy, and reduce the overall average error obviously and it is more stable and robust than Bayesian-MCMC and can identify sudden water pollution accidents source effectively. Therefore, it provides a new idea and method to solve the difficulty of traceability problems in sudden water pollution accidents.


Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1374
Author(s):  
Guolei Zhu ◽  
Yingmin Wang ◽  
Qi Wang

In order to improve the robustness and positioning accuracy of the matched field processing (MFP) in underwater acoustic systems, we propose a conditional probability constraint matched field processing (MFP-CPC) algorithm in this paper, which protects the main-lobe and suppresses the side-lobe to the AMFP by the constraint parameters, such as the posterior probability density of source locations obtained by Bayesian criterion under the assumption of white Gaussian noise. Under such constraint, the proposed MFP-CPC algorithm not only has the same merit of a high resolution as AMFP but also improves the robustness. To evaluate the algorithm, the simulated and experimental data in an uncertain shallow ocean environment is used. From the results, MFP-CPC is robust to the moored source, as well as the moving source. In addition, the localization and tracking performances of using the proposed algorithm are consistent with the trajectory of the moving source.


2016 ◽  
Vol 2016 ◽  
pp. 1-19
Author(s):  
Renchao Jin ◽  
Shengrong Zhao ◽  
Xiangyang Xu ◽  
Enmin Song

Low-resolution (LR) license plate images or videos are often captured in the practical applications. In this paper, a distribution estimation based superresolution (SR) algorithm is proposed to reconstruct the license plate image. Different from the previous work, here, the high-resolution (HR) image is estimated via the obtained posterior probability distribution by using the variational Bayesian framework. To regularize the estimated HR image, a feature-specific prior model is proposed by considering the most significant characteristic of license plate images; that is, the target has high contrast with the background. In order to assure the success of the SR reconstruction, the models representing smoothness constraints on images are also used to regularize the estimated HR image with the proposed feature-specific prior model. We show by way of experiments, under challenging blur with size 7 × 7 and zero-mean Gaussian white noise with variances 0.2 and 0.5, respectively, that the proposed method could achieve the peak signal-to-noise ratio (PSNR) of 22.69 dB and the structural similarity (SSIM) of 0.9022 under the noise with variance 0.2 and the PSNR of 19.89 dB and the SSIM of 0.8582 even under the noise with variance 0.5, which are 1.84 dB and 0.04 improvements in comparison with other methods.


Author(s):  
Qiang Miao ◽  
Dong Wang

Rolling element bearings are widely used in various machinery to support rotation shaft and they are prone to failures. Once a bearing fails, it accelerates failures of other adjacent components and results in unexpected machine breakdown. To prevent machine breakdown and reduce unnecessary economic loss, bearing fault must be detected as early as possible. Besides spectral kurtosis, empirical mode decomposition, cyclostationarity, etc., wavelet transform has proven to be an effective method for identification of different bearing faults because it aims to highlight the inner product between an artificial wavelet function and a signal to be analyzed. In the application of wavelet transform, optimization of wavelet parameters attracts much attention because proper selection of wavelet parameters can maximize performance of wavelet transform and extract impulses caused by bearing faults in the case of interruption from other strong low-frequency vibration components and heavy noises. Compared with other optimization methods, such as genetic algorithm, particle swarm optimization, etc., an analytic and fast Bayesian inference on optimal wavelet parameters for an optimal wavelet filtering for bearing fault diagnosis is proposed in this paper. Prior to Bayesian inference, a state space model of wavelet parameters should be constructed to reflect the relationship between wavelet parameters and measurements. Here, measurements are monotonically increasing kurtosis values, which are able to quantify bearing fault signals. The first kurtosis value and initial wavelet parameters are provided by the fast kurtogram, which is a fast algorithm that can be used to locate one of resonant frequency bands for further demodulation with envelope analysis. For other measurements, they are generated by artificial extrapolations of the first kurtosis value. To iteratively infer posterior probability density functions of wavelet parameters and track the artificial measurements, an unscented transform based Bayesian method is introduced. As the iteration number increases, posterior probability density functions of wavelet parameters converge. Then, the optimal wavelet parameters can be found to conduct an optimal wavelet filtering so as to isolate bearing fault signals from other strong low-frequency vibration components. At last, squared envelope analysis and Fourier transform are utilized to demodulate bearing fault signals enhanced by the proposed method and to identify bearing fault characteristic frequencies, respectively. One real case study is used to illustrate how the proposed method works and to demonstrate that the proposed method can be effectively and efficiently used to extract bearing fault signatures. Additionally, a comparison with the fast kurtogram is conducted to show the proposed method is better than the fast kurtogram for bearing fault diagnosis.


1995 ◽  
Vol 34 (1) ◽  
pp. 260-279 ◽  
Author(s):  
K. Franklin Evans ◽  
Joseph Turk ◽  
Takmeng Wong ◽  
Graeme L. Stephens

Abstract A multichannel passive microwave precipitation retrieval algorithm is developed. Bayes theorem is used to combine statistical information from numerical cloud models with forward radiative transfer modeling. Amultivariate lognormal prior probability distribution contains the covariance information about hydrometeor distributions that resolves the nonuniqueness inherent in the inversion process. Hydrometeor profiles are retrieved by maximizing the posterior probability density for each vector of observations. The hydrometeor profile retrievalmethod is tested with data from the Advanced Microwave Precipitation Radiometer (IO, 19, 37, and 85 GHz) of convection over ocean and land in Florida. The CP-2 multiparameter radar data are used to verify theretrieved profiles. The results show that the method can retrieve approximate hydrometeor profiles, with larger errors over land than water. There is considerably greater accuracy in the retrieval of integrated hydrometeor contents than of profiles. Many of the retrieval errors are traced to problems with the cloud model microphysicalinformation, and future improvements to the algorithm are suggested.


Sign in / Sign up

Export Citation Format

Share Document