Converted PS-wave Velocity Structure from Full Waveform Inversion Reveal High Pore Pressures in the Eastern Black Sea

Author(s):  
G. N. Moukos ◽  
T. A. Minshull ◽  
R. A. Edwards
Geophysics ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. B311-B324 ◽  
Author(s):  
Laura Gassner ◽  
Tobias Gerach ◽  
Thomas Hertweck ◽  
Thomas Bohlen

Evidence for gas-hydrate occurrence in the Western Black Sea is found from seismic measurements revealing bottom-simulating reflectors (BSRs) of varying distinctness. From an ocean-bottom seismic data set, low-resolution traveltime-tomography models of P-wave velocity [Formula: see text] are constructed. They serve as input for acoustic full-waveform inversion (FWI), which we apply to derive high-resolution parameter models aiding the interpretation of the seismic data for potential hydrate and gas deposits. Synthetic tests indicate the applicability of the FWI approach to robustly reconstruct [Formula: see text] models with a typical hydrate and gas signature. Models of S-wave velocity [Formula: see text] containing a hydrate signature can only be reconstructed when the parameter distribution of [Formula: see text] is already well-known. When we add noise to the modeled data to simulate field-data conditions, it prevents the reconstruction of [Formula: see text] completely, justifying the application of an acoustic approach. We invert for [Formula: see text] models from field data of two parallel profiles of 14 km length with a distance of 1 km. Results indicate a characteristic velocity trend for hydrate and gas occurrence at BSR depth in the first of the analyzed profiles. We find no indications for gas accumulations below the BSR on the second profile and only weak indications for hydrate. These differences in the [Formula: see text] signature are consistent with the reflectivity behavior of the migrated seismic streamer data of both profiles in which a zone of high-reflectivity amplitudes is coincident with the potential gas zone derived from the FWI result. Calculating saturation estimates for the potential hydrate and gas zones yields values of up to 30% and 1.2%, respectively.


Geophysics ◽  
2021 ◽  
pp. 1-52
Author(s):  
Yuzhu Liu ◽  
Xinquan Huang ◽  
Jizhong Yang ◽  
Xueyi Liu ◽  
Bin Li ◽  
...  

Thin sand-mud-coal interbedded layers and multiples caused by shallow water pose great challenges to conventional 3D multi-channel seismic techniques used to detect the deeply buried reservoirs in the Qiuyue field. In 2017, a dense ocean-bottom seismometer (OBS) acquisition program acquired a four-component dataset in East China Sea. To delineate the deep reservoir structures in the Qiuyue field, we applied a full-waveform inversion (FWI) workflow to this dense four-component OBS dataset. After preprocessing, including receiver geometry correction, moveout correction, component rotation, and energy transformation from 3D to 2D, a preconditioned first-arrival traveltime tomography based on an improved scattering integral algorithm is applied to construct an initial P-wave velocity model. To eliminate the influence of the wavelet estimation process, a convolutional-wavefield-based objective function for the preprocessed hydrophone component is used during acoustic FWI. By inverting the waveforms associated with early arrivals, a relatively high-resolution underground P-wave velocity model is obtained, with updates at 2.0 km and 4.7 km depth. Initial S-wave velocity and density models are then constructed based on their prior relationships to the P-wave velocity, accompanied by a reciprocal source-independent elastic full-waveform inversion to refine both velocity models. Compared to a traditional workflow, guided by stacking velocity analysis or migration velocity analysis, and using only the pressure component or other single-component, the workflow presented in this study represents a good approach for inverting the four-component OBS dataset to characterize sub-seafloor velocity structures.


Geophysics ◽  
2019 ◽  
Vol 84 (2) ◽  
pp. R271-R293 ◽  
Author(s):  
Nuno V. da Silva ◽  
Gang Yao ◽  
Michael Warner

Full-waveform inversion deals with estimating physical properties of the earth’s subsurface by matching simulated to recorded seismic data. Intrinsic attenuation in the medium leads to the dispersion of propagating waves and the absorption of energy — media with this type of rheology are not perfectly elastic. Accounting for that effect is necessary to simulate wave propagation in realistic geologic media, leading to the need to estimate intrinsic attenuation from the seismic data. That increases the complexity of the constitutive laws leading to additional issues related to the ill-posed nature of the inverse problem. In particular, the joint estimation of several physical properties increases the null space of the parameter space, leading to a larger domain of ambiguity and increasing the number of different models that can equally well explain the data. We have evaluated a method for the joint inversion of velocity and intrinsic attenuation using semiglobal inversion; this combines quantum particle-swarm optimization for the estimation of the intrinsic attenuation with nested gradient-descent iterations for the estimation of the P-wave velocity. This approach takes advantage of the fact that some physical properties, and in particular the intrinsic attenuation, can be represented using a reduced basis, substantially decreasing the dimension of the search space. We determine the feasibility of the method and its robustness to ambiguity with 2D synthetic examples. The 3D inversion of a field data set for a geologic medium with transversely isotropic anisotropy in velocity indicates the feasibility of the method for inverting large-scale real seismic data and improving the data fitting. The principal benefits of the semiglobal multiparameter inversion are the recovery of the intrinsic attenuation from the data and the recovery of the true undispersed infinite-frequency P-wave velocity, while mitigating ambiguity between the estimated parameters.


Geophysics ◽  
2021 ◽  
pp. 1-20
Author(s):  
Xin Zhang ◽  
Andrew Curtis

Seismic full-waveform inversion (FWI) uses full seismic records to estimate the subsurface velocity structure. This requires a highly nonlinear and nonunique inverse problem to be solved, so Bayesian methods have been used to quantify uncertainties in the solution. Variational Bayesian inference uses optimization to provide solutions efficiently. However, previously the method has only been applied to a transmission FWI problem, and with strong prior information imposed on the velocity such as is never available in practice. We show that the method works well in a seismic reflection setting, and with realistically weak prior information, representing the type of problem that occurs in reality. We conclude that the method can produce high-resolution images and reliable uncertainties using data from standard reflection seismic acquisition geometry, realistic nonlinearity, and practically achievable prior information.


Geophysics ◽  
2017 ◽  
Vol 82 (2) ◽  
pp. R109-R117 ◽  
Author(s):  
Lisa Groos ◽  
Martin Schäfer ◽  
Thomas Forbriger ◽  
Thomas Bohlen

The S-wave velocity of the shallow subsurface can be inferred from shallow-seismic Rayleigh waves. Traditionally, the dispersion curves of the Rayleigh waves are inverted to obtain the (local) S-wave velocity as a function of depth. Two-dimensional elastic full-waveform inversion (FWI) has the potential to also infer lateral variations. We have developed a novel workflow for the application of 2D elastic FWI to recorded surface waves. During the preprocessing, we apply a line-source simulation (spreading correction) and perform an a priori estimation of the attenuation of waves. The iterative multiscale 2D elastic FWI workflow consists of the preconditioning of the gradients in the vicinity of the sources and a source-wavelet correction. The misfit is defined by the least-squares norm of normalized wavefields. We apply our workflow to a field data set that has been acquired on a predominantly depth-dependent velocity structure, and we compare the reconstructed S-wave velocity model with the result obtained by a 1D inversion based on wavefield spectra (Fourier-Bessel expansion coefficients). The 2D S-wave velocity model obtained by FWI shows an overall depth dependency that agrees well with the 1D inversion result. Both models can explain the main characteristics of the recorded seismograms. The small lateral variations in S-wave velocity introduced by FWI additionally explain the lateral changes of the recorded Rayleigh waves. The comparison thus verifies the applicability of our 2D FWI workflow and confirms the potential of FWI to reconstruct shallow small-scale lateral changes of S-wave velocity.


Sign in / Sign up

Export Citation Format

Share Document