Assessment and Study the Effect of Carbon Dioxide and Natural Gas Injection Scenarios on Recycling of Condensates in Gas Condensate Reservoirs

Author(s):  
M. Heidari ◽  
M. Abdideh ◽  
J. Ghajar ◽  
M. Banyani
2021 ◽  
Author(s):  
Maged Alaa Taha ◽  
Eissa Shokier ◽  
Attia Attia ◽  
Aamer Yahia ◽  
Khaled Mansour

Abstract In retrograde gas condensate reservoirs, condensate blockage is a major reservoir damage problem, where liquid is dropped-out of natural gas, below dew-point pressure. Despite that most of this liquid will not produce due to not reaching the critical saturation, natural gas will be blocked by the accumulated liquid and will also not produce. This work investigates the effects of gas injection (such as methane, carbon-dioxide, and nitrogen) and steam at high temperatures on one of the Egyptian retrograde gas condensate reservoirs. Several gas injection scenarios that comprise different combination of gas injection temperature, enthalpy, injection gas types (CO2, N2, and CH4), and injection-rates were carried out. The results indicated that all conventional and thermal gas injection scenarios do not increase the cumulative gas production more than the depletion case. The non-thermal gas injection scenarios increased the cumulative condensate production by 8.6%. However, thermal CO2 injection increased the condensate production cumulative by 28.9%. It was observed that thermal gas injection does not vaporize condensate It was observed that thermal gas injection does not vaporize condensate more than conventional injection that have the same reservoir pressure trend. However, thermal injection mainly improves the condensate mobility. Appropriately, thermal injection in retrograde reservoirs, is mostly applicable for depleted reservoirs when the largest amount of non-producible liquid is already dropped out. Finally, this research studied executing thermal gas injection in retrograde gas condensate reservoirs, operationally, by considering the following items: carbon dioxide recovery unit, compressors, storage-tanks, anti-corrosion pipe-lines and tubing-strings, and corrosion-inhibitors along with downhole gas heaters.


1946 ◽  
Vol 38 (5) ◽  
pp. 530-534 ◽  
Author(s):  
Fred H. Poettmann ◽  
Donald L. Katz

2021 ◽  
Vol 1 (3(57)) ◽  
pp. 6-11
Author(s):  
Serhii Matkivskyi

The object of research is gas condensate reservoirs, which is being developed under the conditions of the manifestation of the water drive of development and the negative effect of formation water on the process of natural gas production. The results of the performed theoretical and experimental studies show that a promising direction for increasing hydrocarbon recovery from fields at the final stage of development is the displacement of natural gas to producing wells by injection non-hydrocarbon gases into productive reservoirs. The final gas recovery factor according to the results of laboratory studies in the case of injection of non-hydrocarbon gases into productive reservoirs depends on the type of displacing agent and the level heterogeneity of reservoir. With the purpose update the existing technologies for the development of fields in conditions of the showing of water drive, the technology of injection carbon dioxide into productive reservoirs at the boundary of the gas-water contact was studied using a digital three-dimensional model of a gas condensate deposit. The study was carried out for various values of the rate of natural gas production. The production well rate for calculations is taken at the level of 30, 40, 50, 60, 70, 80 thousand m3/day. Based on the data obtained, it has been established that an increase in the rate of natural gas production has a positive effect on the development of a productive reservoir and leads to an increase in the gas recovery factor. Based on the results of statistical processing of the calculated data, the optimal value of the rate of natural gas production was determined when carbon dioxide is injected into the productive reservoir at the boundary of the gas-water contact is 55.93 thousand m3/day. The final gas recovery factor for the optimal natural gas production rate is 64.99 %. The results of the studies carried out indicate the technological efficiency of injecting carbon dioxide into productive reservoirs at the boundary of the gas-water contact in order to slow down the movement of formation water into productive reservoirs and increase the final gas recovery factor.


1995 ◽  
Author(s):  
A.P. Pires ◽  
A.C.F. Correa ◽  
R.S. Mohamed ◽  
R. Sousa

2018 ◽  
Vol 32 (5) ◽  
pp. 5824-5833 ◽  
Author(s):  
Yira Hurtado ◽  
Cristian Beltrán ◽  
Richard D. Zabala ◽  
Sergio H. Lopera ◽  
Camilo A. Franco ◽  
...  

Author(s):  
Reza Ganjdanesh ◽  
Wei Yu ◽  
Mauricio Xavier Fiallos ◽  
Erich Kerr ◽  
Kamy Sepehrnoori ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document