gas flooding
Recently Published Documents


TOTAL DOCUMENTS

150
(FIVE YEARS 48)

H-INDEX

14
(FIVE YEARS 2)

Author(s):  
Zhen Li ◽  
Ke Gong ◽  
Junfeng Wang ◽  
Yujian Hao ◽  
Youguo Yan ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Rahul Gajbhiye

Abstract Nitrogen and Carbon dioxide are the most common gases utilized in enhanced oil recovery (EOR) techniques. Most of the gas injection process suffers from the gravity override and viscous fingering resulting in lower oil recovery. Foam is introduced in enhanced oil recovery (EOR) to mitigate these problems encountered during gas flooding. When it comes to the CO2-gas injection the CO2-becomes supercritical at a typical reservoir condition giving it difficulty to form CO2-foam at reservoir condition. The CO2-foam has a common problem to become weaker above its supercritical conditions of 1100 psi and 31°C. As a result, the advantages of using CO2 foam are diminished due to the weakness of CO2-foam at supercritical conditions and results in a lower recovery. However, CO2-foam can be generated by replacing a portion of CO2 with N2 gas. It lacks the understating of mixture properties and its effect on EOR. This study evaluates the performance of CO2/N2 foam at supercritical conditions for EOR. It aims to improve recovery under supercritical conditions by using N2/CO2 mixture foam and optimize the foam quality and CO2/N2 ratio. The results from the experiments showed that the CO2/N2 foam flooding recovered an additional oil of Original Initial Oil in Place (OIIP) indicating that foam flooding succeeded in producing more oil than pure CO2-foam injection processes. Also, the results of foam flooding at different foam quality and CO2/N2 ratio significantly affected the performance and recovery of the process. Hence it is necessary to optimize the CO2/N2 foam parameters flooding process which is affected by the parameters such as foam quality and CO2/N2 ratio. The study also shows an experimental approach for optimizing CO2/N2 foam parameters. The concept of adding N2 to CO2 is a novel way of generating CO2 foam at supercritical conditions. Although investigators are trying different ways to generate the strong and stable CO2- foam, adding N2 to CO2 can be considered to be the easiest way for foam generation as CO2 is always having some impurities in the form of other gases and N2 can be considered as one of such gas helps in generating the foam.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8363
Author(s):  
Lihong Yang ◽  
Zhao Liu ◽  
Hao Zeng ◽  
Jianzheng Su ◽  
Yiwei Wang ◽  
...  

In order to weaken the influence of external groundwater on in situ pyrolysis exploitation, the flow characteristics of groundwater were studied according to the oil shale reservoir characteristics of Qingshankou Formation in Songliao Basin, China. In addition, the parameters of marginal gas flooding for water-stopping were optimized. Taking a one-to-one pattern and a five-spot pattern as examples, the characteristics of groundwater flow under the in situ process were studied. Under the one-to-one pattern, the external groundwater flows into the production well from the low-pressure side, and the water yield was basically stable at 1000 kg/d. In the five-spot pattern, the groundwater can flow into the production wells directly from the windward side, and the water yield of the production well on the leeward side mainly comes from the desaturated zone; the water yield of each production well remains at a high level. By setting water-stopping wells around the production well and keeping the gas flooding pressure slightly higher than the production well, the water yield of the production well can be reduced and stabilized within 100 kg/d under gas flooding pressures of 3 and 5 MPa. However, the gas yield of the production well slightly decreased when the gas flooding pressure reduced from 5 to 3 MPa. Therefore, the gas flooding pressure of water-stopping wells shall be determined in combination with the water yield and gas yield, so as to achieve the best process effect. It is expected that the results will provide technical support for large-scale oil shale in situ pyrolysis exploitation.


2021 ◽  
Author(s):  
Josiah Siew Kai Wong ◽  
Tetsuya Suekane

Abstract Foam Enhanced Oil Recovery (EOR) has been employed as an improved recovery method due to its best sweep efficiency and best mobility control over the other injection method such as gas flooding, water flooding and other EOR methods. Foam which has high viscosity illustrates great potential for displacing liquid. The relative immobility of foam in porous media seems to be able to suppress the formation of fingers during oil displacement leading a more stable displacement. However, there are still various parameters that may influence the efficiency of foam assisted oil displacement such as oil properties, permeability of reservoir rock, physical and chemical properties of foam, and other parameters. Also, the interaction and displacement patterns of foam inside the porous media are remained unknown. Thus, in this study, we investigated the three-dimensional (3D) characteristics of oil recovery with gases, water, surfactant, and foam injection in a porous media set-up. By using CT scanning machine, the fluid displacement patterns were captured and analyzed. Moreover, the effect of oil viscosity on foam displacement patterns is studied. The study provides a qualitative and quantitative experimental visualization of 3D displacement structure, oil recovery with gases, liquid and foam injection. As a result, the comparison of fluid displacement patterns between gases, water, surfactant and foam injection show that foam has the good ability in sweeping and forms stable displacement front. The combination of surfactant, liquid and gas, which makes up foam resulted in a synergistic effect in oil displacement. On the other hand, viscous fingering, gravity segregation, trapped oil phenomena are shown in gas flooding and liquid flooding experiments. Thus, foam which displaced stably across the permeable bed resulted in the highest oil recovery factor. The mechanism of foam flow in porous media was understood in this study. Foam, as a series of bubble, burst and become free moving liquid and gas particles when in contact with oil and porous media. Therefore, two displacement fronts could be found from the foam injection experiment, in which the front layer moving ahead in contacting with oil bank is the discontinuous gas/liquid layer and followed by stably foam bank at the back. Due to the stable displacement of foam bank, the effect of oil viscosity on foam displacement is suppressed and showed no distinction in terms of displacement patterns. The flow regimes are found to be the same despite different viscosity of displaced oil. There has been no linear correlation proved between the oil viscosity and oil recovery factor.


2021 ◽  
Vol 11 (23) ◽  
pp. 11082
Author(s):  
Ming Qu ◽  
Tuo Liang ◽  
Jirui Hou

Tahe Oilfield, located in northwest China, is an unconventional fracture–vuggy carbonate reservoir. The foam-assisted nitrogen gas flooding technology has been proven to be a potential EOR technology. However, the flow behaviors of foam-assisted nitrogen gas in fracture–vuggy structures are not clear due to the complex fracture–vuggy structures and their strong heterogeneity. In this work, a three-dimensional visualized fracture–vuggy model is designed and fabricated to investigate the fluids behaviors of foam-assisted N2 flooding and classify the residual oil types after foam-assisted N2 flooding. Experimental results reveal that foam slug can enlarge the sweep efficiency, suppress the formation of nitrogen gas channeling, and detach the oil film. Additionally, the evolution processes of the gas–oil and oil–water interfaces are investigated and analyzed. Moreover, the residual oil types after foam-assisted N2 flooding and nitrogen gas flooding, respectively, are classified and summarized. Compared to nitrogen gas flooding after water flooding, 12.36% more oil can be recovered through foam-assisted N2 flooding. This work further studies the fluid flow behaviors of foam-assisted N2 in the three-dimensional visualized fracture–vuggy carbonate model and also confirms the previous achievements.


Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 4) ◽  
Author(s):  
Yong Qin ◽  
Haochuan Zhang ◽  
Chang Liu ◽  
Haifeng Ding ◽  
Tianyu Liu ◽  
...  

Abstract Field data indicates that oil production decline quickly and the oil recovery factor is low due to low permeability and insufficient energy in the tight oil reservoirs. Enhanced oil recovery (EOR) is required to improve the oil production rates of tight oil reservoirs. Gas flooding is a good means to supplement formation energy and improve oil recovery factor, especially for hydrocarbon gas flooding when CO2 is insufficient. Due to the permeability in some areas is too low, the injected gas cannot spread farther, and the EOR performance is poor. So multifractured horizontal well (MFHW) are usually used to assist gas injection in oilfields. At present, there are few studies on the optimization of hydrocarbon gas flooding parameters especially under the complex fracture network. This article uses unstructured grids to characterize the complex fracture networks, which more realistically shows the flow of formation fluids. Based on actual reservoir data, this paper establishes the numerical model of hydrocarbon gas flooding under complex fracture networks. The article conducts numerical simulation to analyze the effect of different parameters on well performance and provides the optimal injection and production parameters for hydrocarbon gas flooding in the M tight oil reservoir. The optimal injection-production well spacing of the M tight oil reservoir is about 800 to 900 m. The EOR performance is better when the total gas injection rates are about 0.45 HCPV, and gas injection rates of each well are about 3000 to 3500 m3/d (0.021 to 0.025 HCPV/a). The recommended injection-production ratio is about 1.1 to 1.2. This work can offer engineers guidance for hydrocarbon gas flooding of the MFHW with complex fracture networks. Hydrocarbon gas flooding in tight oil reservoirs can enhance oil recovery. The findings of this study can help for a better understanding of the influence of different parameters on hydrocarbon gas flooding in the M tight oil reservoir. This work can also offer engineers guidance for hydrocarbon gas flooding of the MFHW with complex fracture networks.


2021 ◽  
Vol 783 ◽  
pp. 139044
Author(s):  
Chunming Xiong ◽  
Shujun Li ◽  
Bin Ding ◽  
Xiangfei Geng ◽  
Jun Zhang ◽  
...  

2021 ◽  
Author(s):  
Victor de Souza Rios ◽  
Arne Skauge ◽  
Ken Sorbie ◽  
Gang Wang ◽  
Denis José Schiozer ◽  
...  

Abstract Compositional reservoir simulation is essential to represent the complex interactions associated with gas flooding processes. Generally, an improved description of such small-scale phenomena requires the use of very detailed reservoir models, which impact the computational cost. We provide a practical and general upscaling procedure to guide a robust selection of the upscaling approaches considering the nature and limitations of each reservoir model, exploring the differences between the upscaling of immiscible and miscible gas injection problems. We highlight the different challenges to achieve improved upscaled models for immiscible and miscible gas displacement conditions with a stepwise workflow. We first identify the need for a special permeability upscaling technique to improve the representation of the main reservoir heterogeneities and sub-grid features, smoothed during the upscaling process. Then, we verify if the use of pseudo-functions is necessary to correct the multiphase flow dynamic behavior. At this stage, different pseudoization approaches are recommended according to the miscibility conditions of the problem. This study evaluates highly heterogeneous reservoir models submitted to immiscible and miscible gas flooding. The fine models represent a small part of a reservoir with a highly refined set of grid-block cells, with 5 × 5 cm2 area. The upscaled coarse models present grid-block cells of 8 × 10 m2 area, which is compatible with a refined geological model in reservoir engineering studies. This process results in a challenging upscaling ratio of 32 000. We show a consistent procedure to achieve reliable results with the coarse-scale model under the different miscibility conditions. For immiscible displacement situations, accurate results can be obtained with the coarse models after a proper permeability upscaling procedure and the use of pseudo-relative permeability curves to improve the dynamic responses. Miscible displacements, however, requires a specific treatment of the fluid modeling process to overcome the limitations arising from the thermodynamic equilibrium assumption. For all the situations, the workflow can lead to a robust choice of techniques to satisfactorily improve the coarse-scale simulation results. Our approach works on two fronts. (1) We apply a dual-porosity/dual-permeability upscaling process, developed by Rios et al. (2020a), to enable the representation of sub-grid heterogeneities in the coarse-scale model, providing consistent improvements on the upscaling results. (2) We generate specific pseudo-functions according to the miscibility conditions of the gas flooding process. We developed a stepwise procedure to deal with the upscaling problems consistently and to enable a better understanding of the coarsening process.


Sign in / Sign up

Export Citation Format

Share Document