Deterministic Seismic Inversion in a Tight Sandstone Reservoir and Integration in the Geological Model of the Irharen Gas Field (Timimoun Basin, SW Algeria)

Author(s):  
G. Rodrigo ◽  
P. Alonso ◽  
GY. Brenner ◽  
R. Faro ◽  
L. Serra
Author(s):  
Rahmat Catur Wibowo ◽  
Ditha Arlinsky Ar ◽  
Suci Ariska ◽  
Muhammad Budisatya Wiranatanagara ◽  
Pradityo Riyadi

This study has been done to map the distribution of gas saturated sandstone reservoir by using stochastic seismic inversion in the “X” field, Bonaparte basin. Bayesian stochastic inversion seismic method is an inversion method that utilizes the principle of geostatistics so that later it will get a better subsurface picture with high resolution. The stages in conducting this stochastic inversion technique are as follows, (i) sensitivity analysis, (ii) well to seismic tie, (iii) picking horizon, (iv) picking fault, (v) fault modeling, (vi) pillar gridding, ( vii) making time structure maps, (viii) scale up well logs, (ix) trend modeling, (x) variogram analysis, (xi) stochastic seismic inversion (SSI). In the process of well to seismic tie, statistical wavelets are used because they can produce good correlation values. Then, the stochastic seismic inversion results show that the reservoir in the study area is a reservoir with tight sandstone lithology which has a low porosity value and a value of High acoustic impedance ranging from 30,000 to 40,000 ft /s*g/cc.


2017 ◽  
Vol 28 (6) ◽  
pp. 1086-1096 ◽  
Author(s):  
Longwei Qiu ◽  
Shengchao Yang ◽  
Changsheng Qu ◽  
Ningning Xu ◽  
Qingsong Gao ◽  
...  

2015 ◽  
Vol 1092-1093 ◽  
pp. 1485-1489 ◽  
Author(s):  
Jun Sheng ◽  
Wei Sun ◽  
Ji Lei Qin ◽  
Shi Guo Liu ◽  
Ai Ju Li ◽  
...  

The research is based on conventional microscope experiments, the characteristics of microscopic pore structure of tight sandstone reservoir were analyzed via the constant-rate mercury experiment. This paper selected samples of tight sandstone are from the Southeast area of Erdos basin Sulige gas field. The results showed that the dissolution pore and the intergranular pore were mainly reservoir pore structure types; the bundle throat and the lamellar throat were mainly types of throat in the study area. The mainly configure relations of the pore and throat in this area were big pore - fine / fine throat. Finally, according to constant-rate mercury results, analyzed the impact of pore and throats for percolation capacity respectively, came to the conclusions that the tight sandstone gas reservoirs percolation capability in study area is mainly affected by the throat, and the development degree of the throat determines the final physical characteristics of the reservoir.


Sign in / Sign up

Export Citation Format

Share Document