fracture modeling
Recently Published Documents


TOTAL DOCUMENTS

356
(FIVE YEARS 118)

H-INDEX

22
(FIVE YEARS 5)

Author(s):  
Kourosh Khadivi ◽  
Mojtaba Alinaghi ◽  
Saeed Dehghani ◽  
Mehrbod Soltani ◽  
Hamed Hassani ◽  
...  

AbstractThe Asmari reservoir in Haftkel field is one of the most prolific naturally fractured reservoirs in the Zagros folded zone in the southwest of Iran. The primary production was commenced in 1928 and continued until 1976 with a plateau rate of 200,000 bbl/day for several years. There was an initial gas cap on the oil column. Gas injection was commenced in June 1976 and so far, 28% of the initial oil in place have been recovered. As far as we concerned, fracture network is a key factor in sustaining oil production; therefore, it needs to be characterized and results be deployed in designing new wells to sustain future production. Multidisciplinary fracture evaluation from well to reservoir scale is a great privilege to improve model’s accuracy as well as enhancing reliability of future development plan in an efficient manner. Fracture identification and modeling usually establish at well scale and translate to reservoir using analytical or numerical algorithms with the limited tie-points between wells. Evaluating fracture network from production data can significantly improve conventional workflow where limited inter-well information is available. By incorporating those evidences, the fracture modeling workflow can be optimized further where lateral and vertical connectivity is a concern. This paper begins with the fracture characterization whereby all available data are evaluated to determine fracture patterns and extension of fracture network across the field. As results, a consistent correlation is obtained between the temperature gradient and productivity of wells, also convection phenomenon is confirmed. The findings of this section help us in better understanding fracture network, hydrodynamic communication and variation of temperature. Fracture modeling is the next step where characteristics of fractures are determined according to the structural geology and stress directions. Also, the fault’s related fractures and density of fractures are determined. Meanwhile, the results of data evaluation are deployed into the fracture model to control distribution and characteristics of fracture network, thereby a better representation is obtained that can be used for evaluating production data and optimizing development plan.


2022 ◽  
pp. 213-243
Author(s):  
Raghvendra Kumar Mishra ◽  
Abhideep Kumar
Keyword(s):  

2021 ◽  
Vol 16 (59) ◽  
pp. 1-17
Author(s):  
Riccardo Fincato ◽  
Seiichiro Tsutsumi

Since the end of the last century a lot of research on ductile damaging and fracture process has been carried out. The interest and the attention on the topic are due to several aspects. The margin to reduce the costs of production or maintenance can be still improved by a better knowledge of the ductile failure, leading to the necessity to overcome traditional approaches. New materials or technologies introduced in the industrial market require new strategies and approaches to model the metal behavior. In particular, the increase of the computational power together with the use of finite elements (FE), extended finite elements (X-FE), discrete elements (DE) methods need the formulation of constitutive models capable of describing accurately the physical phenomenon of the damaging process. Therefore, the recent development of novel constitutive models and damage criteria. This work offers an overview on the current state of the art in non-linear deformation and damaging process reviewing the main constitutive models and their numerical applications.


2021 ◽  
Vol 133 ◽  
pp. 120-137
Author(s):  
Yongzheng Zhang ◽  
Huilong Ren ◽  
Pedro Areias ◽  
Xiaoying Zhuang ◽  
Timon Rabczuk

2021 ◽  
Vol 386 ◽  
pp. 114086
Author(s):  
Pengfei Li ◽  
Julien Yvonnet ◽  
Christelle Combescure ◽  
Hamid Makich ◽  
Mohammed Nouari

Sign in / Sign up

Export Citation Format

Share Document