Sharing Geophysical Data for Seismic Characterization of the Matera (Southern Italy) Urban Area

Author(s):  
N. Tragni ◽  
G. Calamita ◽  
L. Lastilla ◽  
V. Belloni ◽  
R. Ravanelli ◽  
...  
Geosciences ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 416
Author(s):  
Enrico Paolucci ◽  
Giuseppe Cavuoto ◽  
Giuseppe Cosentino ◽  
Monia Coltella ◽  
Maurizio Simionato ◽  
...  

A first-order seismic characterization of Northern Apulia (Southern Italy) has been provided by considering geological information and outcomes of a low-cost geophysical survey. In particular, 403 single-station ambient vibration measurements (HVSR techniques) distributed within the main settlements of the area have been considered to extract representative patterns deduced by Principal Component Analysis. The joint interpretation of these pieces of information allows the identification of three main domains (Gargano Promontory, Bradanic Through and Southern Apennines Fold and Thrust Belt), each characterized by specific seismic resonance phenomena. In particular, the Bradanic Through is homogeneously characterized by low frequency (<1 Hz) resonance effects associated with relatively deep (>100 m) seismic impedance, which is contrasting corresponding to the buried Apulian carbonate platform and/or sandy horizons located within the Plio-Pleistocene deposits. In the remaining ones, relatively high frequency (>1 Hz) resonance phenomena are ubiquitous due to the presence of shallower impedance contrasts (<100 m), which do not always correspond to the top of the geological bedrock. These general indications may be useful for a preliminary regional characterization of seismic response in the study area, which can be helpful for an effective planning of more detailed studies targeted to engineering purposes.


2013 ◽  
Vol 90 (3) ◽  
pp. 214-219 ◽  
Author(s):  
Giuseppina Lacerra ◽  
Romeo Prezioso ◽  
Gennaro Musollino ◽  
Giulio Piluso ◽  
Lucia Mastrullo ◽  
...  

2010 ◽  
Vol 34 (4) ◽  
pp. 387-392 ◽  
Author(s):  
Anna Giannina Perugini ◽  
Maria Rosaria Carullo ◽  
Assunta Esposito ◽  
Vincenzo Caligiuri ◽  
Federico Capuano ◽  
...  

2017 ◽  
Author(s):  
Valentina Zampetti ◽  
Sonia Perrotta ◽  
Ghassen Chaari ◽  
Thomas Krayenbuehl ◽  
Matthias Braun ◽  
...  

2018 ◽  
Vol 43 (10) ◽  
pp. 2219-2231 ◽  
Author(s):  
Velio Coviello ◽  
Lucia Capra ◽  
Rosario Vázquez ◽  
Victor H. Márquez-Ramírez

2013 ◽  
Vol 58 (8) ◽  
pp. 1760-1778 ◽  
Author(s):  
C.L. Djebebe-Ndjiguim ◽  
F. Huneau ◽  
A. Denis ◽  
E. Foto ◽  
G. Moloto-a-Kenguemba ◽  
...  

2018 ◽  
Vol 18 (11) ◽  
pp. 3019-3035 ◽  
Author(s):  
Marco Uzielli ◽  
Guido Rianna ◽  
Fabio Ciervo ◽  
Paola Mercogliano ◽  
Unni K. Eidsvig

Abstract. In recent years, flow-like landslides have extensively affected pyroclastic covers in the Campania region in southern Italy, causing human suffering and conspicuous economic damages. Due to the high criticality of the area, a proper assessment of future variations in event occurrences due to expected climate changes is crucial. The study assesses the temporal variation in flow-like landslide hazard for a section of the A3 “Salerno–Napoli” motorway, which runs across the toe of the Monte Albino relief in the Nocera Inferiore municipality. Hazard is estimated spatially depending on (1) the likelihood of rainfall-induced event occurrence within the study area and (2) the probability that the any specific location in the study area will be affected during the runout. The probability of occurrence of an event is calculated through the application of Bayesian theory. Temporal variations due to climate change are estimated up to the year 2100 through an ensemble of high-resolution climate projections, accounting for current uncertainties in the characterization of variations in rainfall patterns. Reach probability, or defining the probability that a given spatial location is affected by flow-like landslides, is calculated spatially based on a distributed empirical model. The outputs of the study predict substantial increases in occurrence probability over time for two different scenarios of future socioeconomic growth and atmospheric concentration of greenhouse gases.


Sign in / Sign up

Export Citation Format

Share Document