Tectonic zoning scheme of the Bashkir Cis-Urals consolidated crust basement

Author(s):  
V. S. Druzhinin ◽  
N. I. Nachapkin ◽  
V. Yu. Osipov ◽  
L. A. Muravyev
Keyword(s):  
2009 ◽  
Vol 39 (1) ◽  
pp. 1-17 ◽  
Author(s):  
Robert Tenzer ◽  
Peter Vajda ◽  

Global maps of the step-wise topography corrected and crustal components stripped geoids using the CRUST 2.0 modelWe compile global maps of the step-wise topography corrected and crustal components stripped geoids based on the geopotential model EGM'08 complete to spherical harmonic degree 180 and the CRUST 2.0 global crustal model. The spectral resolution complete to degree 180 is used to compute the primary indirect bathymetric stripping and topographic effects on the geoid, while degree 90 for the primary indirect ice stripping effect. The primary indirect stripping effects of the soft and hard sediments, and the upper, middle and lower consolidated crust components are forward modeled in spatial form using the 2 × 2 arc-deg discrete data of the CRUST 2.0 model. The ocean, ice, sediment and consolidated crust density contrasts are defined relative to the adopted reference crustal density of 2670 kg/m3. Finally we compute and apply the primary indirect stripping effect of the density contrast (relative to the mantle) of the reference crust. The constant value of -520 kg/m3is adopted for this density contrast relative to the mantle. All data are evaluated on a 1 × 1 arc-deg geographical grid. The complete crust-stripped geoidal undulations, globally having a range of approximately 1.5 km, contain the gravitational signal coming from the global mantle lithosphere (upper mantle) morphology and density composition, and from the sub-lithospheric density heterogeneities. Large errors in the complete crust-stripped geoid are expected due to uncertainties of the CRUST 2.0 model, i.e., due to deviations of the CRUST 2.0 model density from the real earth's crustal density and due to the Moho-boundary uncertainties.


Author(s):  
В.Б. Заалишвили ◽  
Х.О. Чотчаев ◽  
А.Г. Шемпелев

В статье рассматривается возможность выделения наследственных признаков геодинамической обстановки и элементов структурно-вещественных комплексов, участвующих в геологическом развитии  Кавказа, на глубинных геоэлектрических и сейсмологических разрезах для создания геолого-геофизической моделей земной коры вдоль региональных профилей. Современные структурно-тектонические и структурно-вещественные комплексы восточной части Центрального Кавказа интерполируются с основными структурами консолидированной коры и низов коры. Обосновывается научный и практический интерес корреляционной увязки глубинных коровых и мантийных структур с месторождениями твердых полезных ископаемых и углеводородов, роль границы Мохоровичича в локализации месторождений. Субширотная структура реликтового рубца (геосутуры), уверенно выделяемая по минимумам напряженности полного вектора магнитного поля по структурно-вещественным элементам (олистостромы, офиолиты, микститы) представляется убедительным наследственным признаком субдукции. Реликтовый рубец представляется выполненным тектонизированным терригенным материалом, содержащим разного размера глыбы и блоки вулканогенно-осадочных пород и ремобилизованные олистостромы пород офиолитового комплекса, что является формационным признаком геодинамической обстановки, фиксируемой в развитии структуры Кавказа. The article deals with the possibility of identifying hereditary features of the geodynamic situation and elements of structural and material complexes involved in the geological development of the Caucasus, in deep geoelectric and seismological sections to create geological and geophysical models of the earth's crust along the regional profiles. Modern structural-tectonic and structural-material complexes of the Eastern part of the Central Caucasus are interpolated with the main structures of the consolidated crust and the lower crust. The scientific and practical interest of correlation linking of deep crustal and mantle structures with deposits of solid minerals and hydrocarbons, the role of the boundary of Mokhorovichych in the localization of deposits is substantiated. Latitudinal structure of the relic scar (geostructure), confidently allocated to the minimum of the tension of magnetic field full vector on structural-material elements (olistostromes, ophiolites, mixtite) persuasive inherited character of subduction. Relict scar is represented by tectonized terrigenous material containing different size blocks and blocks of volcanogenic-sedimentary rocks and remobilized olistostromes of rocks of the ophiolite complex, which is a formative sign of geodynamic situation, recorded in the development of the structure of the Caucasus.


2020 ◽  
Author(s):  
Oleg Petrov ◽  
Manuel Pubellier ◽  
Andrey Morozov ◽  
Sergey Kashubin ◽  
Sergey Shokalsky ◽  
...  

<p>In 2019, the compilation of the new Tectonic Map of the Arctic (Tectonic Map of the Arctic, 2019: eds. O. Petrov, M. Pubellier) was completed. The map was compiled under the international project Atlas of Geological Maps of the Circumpolar Arctic, 1:5M with the participation of representatives of all Arctic states under the auspices of the Commission for the Geological Map of the World at UNESCO. The new 1:5M Tectonic map of the Arctic is a GIS project, which provides a transition to three-dimensional geological mapping of the Arctic. The project includes the crustal and sedimentary cover thickness maps, the crustal types map, the tectonic zonality map of the basement, schematic  map of key igneous provinces of the Circum-Arctic region and the geological transect compiled taking into account the latest scientific geological and geophysical data accumulated in recent decades as a result of high-latitude expeditions and scientific programs to substantiate the extended continental shelf in the Arctic. The new Tectonic map of the Arctic proved the continental nature of the Central Arctic Uplifts as a natural geological extension of Eurasia. Close structural relationships of deep-water parts of the Central Arctic and the shallow continental shelf of Northern Eurasia are substantiated by geological and geophysical characteristics of the consolidated crust, the upper mantle and sedimentary cover, as well as the common parameters of the magnetic and gravitational potential fields.</p>


1997 ◽  
Vol 134 (5) ◽  
pp. 597-606 ◽  
Author(s):  
HANS THYBO

The Tornquist Fan is a northwestward widening splay of late Carboniferous–early Permian fault zones in the region of Denmark emanating from the Teisseyre-Tornquist Zone in northern Poland. The crust–mantle boundary shows an undulating topography which correlates with the main tectonic features of the area. Zones of high average velocity through the consolidated crust coincide with pronounced positive Bouguer gravity anomalies in the deep basins and in the border zone of the shield. Less pronounced, similar correlation to gravity is found for the thickness of the lower crust, whereas the thickness of the upper crust in parts is inversely related to the gravity anomalies. Some magnetic anomalies appear to be related to the gravity anomalies. The positive features are interpreted as magmatic bodies that formed during late Carboniferous to early Permian transtensional movement along the faults of the Tornquist Fan, which explains pull-apart structures in the area and the Ringkøbing-Fyn basement High. The magmatism has strong implications for the subsequent formation of the regional Mesozoic basins. Localized dextral strike-slip movement on the Teisseyre-Tornquist Zone became distributed over the Tornquist Fan, which formed part of the rigid Baltic Shield and was situated at the northwestern end of this major, long-reaching Central European zone. As defined by late Cretaceous–early Tertiary compressional inversion structures, the Sorgenfrei-Tornquist Zone cuts across the Tornquist Fan area.


Sign in / Sign up

Export Citation Format

Share Document