crustal density
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 17)

H-INDEX

16
(FIVE YEARS 1)

Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 6) ◽  
Author(s):  
M. Prasad ◽  
C. P. Dubey ◽  
K. B. Joshi ◽  
V. M. Tiwari

Abstract The Southern Granulite Terrain (SGT) is a large tract of exposed Archean continental crust, divided into the Madurai Block (MB), Trivandrum Block (TB), and Nagercoil Block (NB). These crustal domains are linked with the NW-SE trending Achankovil Shear Zone (AKSZ). We combine gravity and magnetic data with previously published ground observations and geochronological data to re-evaluate the crustal architecture, evolution of the AKSZ, and possible extension of AKSZ into Madagascar. Analyses indicate that the long wavelength trends of the magnetic anomalies originate at ~20 km depth of different SGT blocks. These observations are corroborated with the gravity as well as computed gravity gradient anomalies. The presence of khondalite outcrops in Trivandrum Block implies that high magnetization crust is the main source of positive magnetic anomalies. Such magnetic anomalies advocate that SGT preserves the remanent of Archean crustal blocks in South India, a part due to variation in thermal and geochemical processes. The AKSZ, TB, and MB exhibit contrasting magnetic crustal signatures. The joint modeling results reveal a three-layered crustal configuration with varying Moho ranging from 41 to 34 km in NE to SW, respectively. It is also noted that AKSZ is a narrow and deep structure near to the Western Ghats Escarpment while it is wide and shallow in the far-east, which implies that the evolution of the Western Ghats is a late geological event.


Geophysics ◽  
2021 ◽  
pp. 1-68
Author(s):  
Francesca Maddaloni ◽  
Tommaso Pivetta ◽  
Carla Braitenberg

The global gravity field obtained from the observations of the satellite GOCE offers new opportunities in defining density variations of Earth’s crust and mantle, allowing new insights into the structure of specific geologic features. The central African rift is a key feature in understanding of the dismemberment of Gondwana, and we contribute to defining the crustal density structure underlying the rift. The presence of a narrow and up to 12 km deep basin implies crustal stretching to allow the sediment to accumulate, but a key question is whether the stretching processes affected also the deeper layers of the crust or was limited to the upper crust. The study-area includes a sub-basin of the greater Chad sag-basin, which extends over a 1500 km by 1500 km, and occupies the center of North-Central Africa, shared between the countries of Chad, Sudan, Nigeria, Niger, Algeria, Libya and Cameroon. We find that the rifting affected the lower crust of the West African Rift and demonstrate evidence for a 1500 km long and several km thick magmatic crustal intrusion presumably associated with underplating and crustal thinning. We estimate that the stretching factor must be at least 1.5 and had affected the entire crust. To our knowledge, the identification of a continuous body of magmatic intrusions is new and has been only possible through the recent global gravity field. The magmatism has altered the thermal conditions from the time of emplacement on, and is relevant for the maturation of hydrocarbons present in the sediments. The timing of the magmatism is presumably tied to two pulses of volcanism documented in the rift, associated with the first post-rift phase from 96 to 88 Ma and the second post-rift phase from 23 Ma up to the Quaternary.


2021 ◽  
Author(s):  
Xiaochuan Tian ◽  
W Buck

Abstract Temporal correlations between continental flood basalt eruptions and mass extinctions are well known 1. Massive carbon degassing from volcanism of Large Igneous Provinces can cause catastrophic global climatic and biotic perturbations 1–3. However, recent more accurate dating of the Deccan Traps 4 and Columbia River Basalts 5 challenges this causal link by showing that global warming preceded the major phase of flood basalts eruptions by several hundred thousand years. Here, we argue that major eruptions of continental flood basalts may require densification of the crust by intrusion of larger volumes of magma than are extruded. Simple models show that magma crystallization and release of CO2 from such intrusions could produce global warming before the main phase of flood basalt eruptions on the observed timescale. Being consistent with many geological, geophysical, geochemical and paleoclimate data, our model suggests that the evolving crustal density has a first order control on timing of the major phase of continental flood basalt volcanism while the preceding intrusion induced underground degassing of CO2 plays a significant role in controlling the Earth's climate and habitability.


2021 ◽  
Author(s):  
Christopher Jekeli

<p>When thinking of gravity in geodesy and geophysics, one usually thinks of its magnitude, often referred to a reference field, the normal gravity.  It is, after all, the free-air gravity anomaly that plays the significant role in terrestrial data bases that lead to Earth Gravitational Models (such as EGM96 or EGM2008) for a multitude of geodetic and geophysical applications.  It is the Bouguer anomaly that geologists and exploration geophysicists use to infer deep crustal density anomalies.  Yet, it was also Pierre Bouguer (1698-1758) who, using the measured direction of gravity, was the first to endeavor a determination of Earth’s mean density (to “weigh the Earth”), that is, by observing the deflection of the vertical due to Mount Chimborazo in Ecuador.  Bouguer’s results, moreover, sowed initial seeds for the theories of isostasy.  With these auspicious beginnings, the deflection of the vertical has been an important, if not illustrious, player in geodetic history that continues to the present day.  Neglecting the vertical deflection in fundamental surveying campaigns in the mid to late 18<sup>th</sup> century (e.g., Lacaille in South Africa and Méchain and Delambre in France) led to errors in the perceived shape of the Earth, as well as its scale that influenced the definition of the length of a meter.  The vertical deflection, though generally excluded from modern EGM developments, nevertheless forms a valuable resource to validate such models.  It is also the vertical deflection that is indispensable for precision autonomous navigation (i.e., without external aids such as GPS) using inertial measurement units.  It is the deflection of the vertical that, measured solely along horizontal lines, would readily provide geoid undulation profiles, essential for the modernization of height systems (i.e., vertical geodetic control) without the laborious and traditional methods of spirit leveling.  But, measuring the deflection of the vertical is itself an arduous undertaking and this has essentially contributed to its neglect and/or underusage.  Even Vening-Meinesz’s formulas of convolution with gravity anomalies do not greatly facilitate its determination.  This presentation offers a review of the many roles the vertical deflection has, or could have, played over the centuries, how it has been measured or computed, and how gravity gradiometry might eventually awaken its full potential.</p>


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1497
Author(s):  
Guangliang Yang ◽  
Chongyang Shen ◽  
Hongbo Tan ◽  
Jiapei Wang

The Barkam–Jiuzhaigou–Wuqi gravity profile extends across the Jiuzhaigou Ms7.0 earthquake (in 2017) zone and passes through several historical big earthquakes’ zones. We have obtained Bouguer gravity anomalies along the profile composed of 365 gravity observation stations with Global Positioning System (GPS) coordinates, analyzed the observed data and inverted subsurface density structure. The results show that the Moho depth has a big lateral variation from southwest to northeast, which shallows from 57 km to 43 km with maximum variation up to 14 km within 800 km. The most acute depth change of the Moho is in the boundary region between the Bayan Har block and West Qinling–Qilian block. According to our analysis, it is related to the eastward movement of the Bayan Har block. There are three main pieces of evidence that support it: (1) Density is higher in the east of the Bayan Har block and smaller in the west, which is the same as seismic activity; (2) Two thin low-density layers exist in the upper and middle crust of the Bayan Har block, which may promote inter-layer slip and the Jiuzhaigou Ms7.0 earthquake occurred in the boundary area of the two low-density layers, where the crustal density and Moho surface fluctuate sharply; (3) the GPS velocity field in the southwestern part gravity profile is significantly larger than that of the northeastern part, which is consistent with the density structure. Our studies also suggest that the large undulation of the Moho prevents the movement of the Bayan Har block, and strain is prone to accumulate here. The dynamic background analysis of the crust in this area indicates that the Moho surface uplifts in the West Qinling–Qilian block, which decelerates the eastern migration of material on the Qinghai–Tibet Plateau, and leads to the weak tectonic activity of the north part of the Bayan Har block.


2020 ◽  
Vol 11 (4) ◽  
pp. 697-709
Author(s):  
N. K. Gayday ◽  
N. A. Goryachev ◽  
I. M. Khasanov ◽  
E. Yu. Goshko

Ore deposits of the Magadan region are now in the focus of comprehensive studies as information on their deep structure is needed for both subsoil prospecting and regional development planning. This article presents the research results for the southeastern flank of the Yana-Kolyma orogenic belt. This area located at the junction with the Okhotsk-Koryak orogenic belt was investigated using the northeastern segment of the regional geophysical profile 3-DV. We analyzed the frequency-energy sections of the crust along the profile, 3D crustal density model of the entire study area, and magnetic, geoelectric and gravimagnetic characteristics of the crust. Complex data interpretation allowed tracing the crustal fault zones, areas wherein the crust material was strongly reworked, and zones of quasi-horizontal stratification. Considering the revealed features of the physical parameters of the crust material, we conclude that the currently accepted boundaries of individual tectonic blocks in the study area need to be adjusted. The northern boundary of the Balygychan uplift should be mapped along the Pautov fault. The Srednekansky branch of the Inyali-Debinsky synclinorium should be considered a transitional block that belongs to the Sugoi synclinorium, and its name should be changed to the Orotukan block.


2020 ◽  
Author(s):  
Fei Ji ◽  
Qiao Zhang

<p>Crustal density is a fundamental physical parameter that helps to reveal its composition and structure, and is also significantly related to the tectonic evolution and geodynamics. Based on the latest Bouguer gravity anomalies and the constrains of 3-D shear velocity model and surface heat flow data, the 3-D gravity inversion method, incorporating deep weight function, has been used to obtain the refined density structure over the Antarctic continent. Our results show that the density anomalies changes from -0.25 g/cm<sup>3</sup> to 0.20 g/cm<sup>3</sup>. Due to the multi-phase extensional tectonics in Mesozoic and Cenozoic, the low density anomalies dominates in the West Antarctica, while the East Antarctica is characterized by high values of density anomalies. By comparing with the variations of effective elastic thickness, the inverted density structure correlates well with the lithospheric integrated strength. According to the mechanical strength and inverted density structure in the West Antarctic Rift System (WARS), our analysis found that except for the local area affected by the Cenozoic extension and magmatic activity, the crustal thermal structure in the WARS tends to be normal under the effect of heat dissipation. Finally, the low density anomalies features in West Antarctica extend to beneath the Transantarcitc Mountains (TAMs), however, we hypothesize that a single rift mechanism seems not be used to explain the entire TAMs range.</p>


2020 ◽  
Author(s):  
Nils-Peter Finger ◽  
Mikhail Kaban ◽  
Magdala Tesauro ◽  
Carina Haeger ◽  
Walter Mooney ◽  
...  

<p>We present an integrated model of the cratonic lithosphere of South America. Gravity and seismic data were jointly analyzed using mineral physics constraints to assess state and evolution of the cratonic roots in South America in terms of temperature, density and composition. At the cratons, our model enables separation of two counteracting effects: the increased density due to cooling with age and decreased density due to depletion of iron. The depletion of iron can be described by the Mg# which gives the partition of Mg<sup>2+</sup> among the double positive ions. A new crustal model (including depth to the Moho) based on existing seismic data was used to correct the gravity field for crustal effects and to uncover the gravity signal of the mantle. In addition, residual topography was calculated as a measure of the part of topography not balanced by the crustal density variations and depth to the Moho. Temperatures within the lithospheric mantle were estimated based on seismic velocities and mineral physics equations, initially assuming a juvenile mantle composition (Mg# of 89). The residual fields were corrected for the respective effects. In the following inversion of residual gravity and topography, we have determined additional density variations which can be interpreted as compositional ones. Furthermore, these results were employed to recompute the upper mantle temperatures taking into account possible compositional changes in the cratonic roots. In this iterative procedure, a consistent thermo-compositional model of the upper mantle has been obtained. Negative compositional density variations imply depletion of iron, leading to higher Mg#s. The highest depletion occurs in the Amazonas and São Francisco Cratons reaching values in the cratons’ centers of up to 90 (Mg#). At the same time, their centers show very low temperatures, down to 600° C in the depth of 100 km. They stay below 1300° C even at a depth of 200 km, indicating deep lithospheric roots. Higher temperatures are found in the Andean forelands and along the Trans-Brasiliano-Lineament (TBL), dividing the Amazonas and São Francisco Cratons. Compositional density variations yield smaller to no amounts of depletion in the Amazonas Craton below a depth of 100 km. The São Francisco Craton still shows depletion in 200 km depth (Mg# up to 89.5). Slightly negative compositional density variations southwest of the São Francisco Craton also exist at depths up to 200 km, indicating the Paranapanema cratonic fragment.</p>


Sign in / Sign up

Export Citation Format

Share Document