basement high
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 17)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Vol 69 ◽  
pp. 97-121
Author(s):  
Jens Martin Hvid ◽  
Frans van Buchem ◽  
Frank Andreasen ◽  
Emma Sheldon ◽  
Ida Lykke Fabricius

The Faxe limestone quarry in eastern Denmark exposes Danian (Lower Paleocene) cool-water carbonate deposits. They constitute remnants of an apparent build-up that covers about 12 km2 today. The Danian deposits at Faxe are conspicuous due to their pronounced thickness of coral limestone relative to the regional carbonate system. In the Faxe quarry, scleractinian corals are uniquely exposed in up to 30 m high mounds. The rapid accumulation of scleractinians combined with induration of the mounds may locally have protected the limestone from Quaternary glacial erosion and created a Danian thickness anomaly at Faxe. The position of Faxe above a local fault-bounded basement high and the extent of coral limestone has been better defined by new mapping. A mapped lithostratigraphic surface in the quarry reveals the large-scale organisation of nested bryozoan mounds on three elongated ridges striking NW–SE. The main scleractinian coral mounds are located above this horizon. Data for reservoir characterisation, mainly of the bryozoan mounds, were collected as photographs of the outcrop, petrophysical and petrographical data from cored boreholes, and as ground-penetrating radar sections. Old boreholes and measured sections were used to reconstruct the build-up, and new nannofossil data allow a discussion of stratigraphy and accumulation rate. The petrophysical data show that common mound-building bryozoan packstone has higher permeability and lower capillary entry pressure than chalk, whereas less commonly occurring grain-dominated packstone and grainstone deposits from local higher-energy sites of the mound complex were found to have reduced amounts of coccolith mud, significantly higher permeability and a higher degree of lithification. Based on biostratigraphic age constraints, correlation of flint – limestone couplets and recog-nised hierarchical patterns, we develop a cyclostratigraphy for the middle Danian and suggest that cyclicity in lithology and petrophysical characteristics of bryozoan limestone are controlled by precession and eccentricity of the orbit of the Earth.


Solid Earth ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1865-1897
Author(s):  
Mikael Evain ◽  
Philippe Schnürle ◽  
Angélique Leprêtre ◽  
Fanny Verrier ◽  
Louise Watremez ◽  
...  

Abstract. Coincident wide-angle and multi-channel seismic data acquired within the scope of the PAMELA Moz3-5 project allow us to reconsider the formation mechanism of East African margins offshore of southern Mozambique. This study specifically focuses on the sedimentary and deep-crustal architecture of the Limpopo margin (LM) that fringes the eastern edge of the Mozambique’s Coastal Plain (MCP) and its offshore southern prolongation the North Natal Valley (NNV). It relies primarily on the MZ3 profile that runs obliquely from the northeastern NNV towards the Mozambique basin (MB) with additional inputs from a tectonostratigraphy analysis of industrial onshore–offshore seismic lines and nearby or crossing velocity models from companion studies. Over its entire N–S extension the LM appears segmented into (1) a western domain that shows the progressive eastward crustal thinning and termination of the MCP/NNV continental crust and its overlying pre-Neocomian volcano-sedimentary basement and (2) a central corridor of anomalous crust bounded to the east by the Mozambique fracture zone (MFZ) and the oceanic crust of the MB. A prominent basement high marks the boundary between these two domains. Its development was most probably controlled by a steep and deeply rooted fault, i.e., the Limpopo fault. We infer that strike-slip or slightly transtensional rifting occurred along the LM and was accommodated along this Limpopo fault. At depth we propose that ductile shearing was responsible for the thinning of the continental crust and an oceanward flow of lower crustal material. This process was accompanied by intense magmatism that extruded to form the volcanic basement and gave the corridor its peculiar structure and mixed nature. The whole region remained at a relative high level during the rifting period and a shallow marine environment dominated the pre-Neocomian period during the early phase of continent–ocean interaction. It is only some time after break-up in the MB and the initiation of the MFZ that decoupling occurred between the MCP/NNV and the corridor, allowing for the latter to subside and become covered by deep marine sediments. A scenario for the early evolution and formation of the LM is proposed taking into account both recent kinematic and geological constraints. It implies that no or little change in extensional direction occurred between the intra-continental rifting and subsequent phase of continent–ocean interaction.


2021 ◽  
pp. M57-2017-42
Author(s):  
A. G. Doré ◽  
T. Dahlgren ◽  
M. J. Flowerdew ◽  
T. Forthun ◽  
J. O. Hansen ◽  
...  

AbstractThe south-central Barents Sea today comprises a shallow continental shelf with water depths mainly in the 200-400m range, straddling the Norway-Russia marine boundary. Geologically it consists of a stable platform (the Bjarmeland Platform), dissected by rifts of probable Late Carboniferous age, with a significant and geologically persistent basement high (the Fedynsky High) in its south-eastern part. The rifts are the ENE-WSW trending Nordkapp Basin, the similarly-trending but less clearly demarcated Ottar Basin, and the NW-SE Tiddlybanken Basin. The varying rift trends appear to reflect the orogenic grain patchwork of the basement (Caledonide and Timanide), and these basins were infilled with a variable facies assemblage including substantial Carboniferous-Permian halites.Massive sedimentary influx of fluvio-deltaic to shallow marine sediments took place in the Triassic, from the E and SE (Urals, Novaya Zemlya and western Siberia) and south (Baltic Shield), resulting in doming and diapirism in the areas of thickest salt, particularly in the rifts. The succeeding Jurassic, Cretaceous and Cenozoic successions are generally thin, locally thickening in rim synclines and in the NE of the area towards the deep basins flanking Novaya Zemlya. Reactivation of the halokinetic structures took place in the early Cenozoic, probably associated with the development of the NE Atlantic-Arctic Ocean linkage.Marine source rocks of Triassic and Late Jurassic age are present in the area, along with Carboniferous and Permian source rocks of uncertain effectiveness. Petroleum has been found in Jurassic and Triassic clastic reservoirs, including recent shallow Jurassic oil and gas discoveries. Although none are currently in production, near-future oil development is likely in Wisting discovery, on the western margin of the area. New exploration, including drilling, is currently taking place in the east of the area as a result of recent Norwegian and Russian licensing.


2021 ◽  
Author(s):  
Laure Schenini ◽  
Alexandra Skrubej ◽  
Mireille Laigle ◽  
Alessandra Ribodetti ◽  
Laure Combe ◽  
...  

<p>Offshore 2D-Multichannel seismic (MCS)-reflection profiles were acquired in northern Ecuador during the HIPER survey (March/April 2020, R/V L’Atalante) together with one 2D-OBS-seismic-refraction profile (presented in a joint abstract by A. Skrubej). This project (presented in a joint abstract by A. Galve) aims at deciphering the role of lower plate structural heterogeneities and fluids on subduction zone seismogenesis processes within the 2016 Pedernales rupture segment, which is characterized by contrasting slip behaviors. We put a particular emphasis on the segment located at the northern termination of the subducting Carnegie Ridge which was devoid of previous seismic investigations. Three lines of 315-km-long in total, one North of the 2016 Pedernales rupture zone sampling an area experiencing aseismic slip and two lines parallel to the trench, were recorded using an airgun source of 4990 in<sup>3</sup> and a 6-km-long streamer. In this study, we present in detail the seismic processing workflow used to produce an enhanced imaging of the Ecuadorian margin, a prerequisite for tackling the project’s objectives.</p><p>We performed routine MCS data processing onboard to produce post-stack time migrated sections using Geovation<sup>® </sup>CGG’s software. The dip-line collected across the northern Atacames seamounts area provides a detailed image through the whole Nazca oceanic crust down to the Moho, showing a normal crust thickness, at least on the oceanward portion, up to 15 km to the west of the trench. At the trench, we image a horst-like basement topographic high, which outcrops at sea-bottom, offsets the deformation front arcwards, with the outcropping frontal decollement reflector topping this oceanic basement high. Its nature, fluid content potential and lateral extent need to be determined, but its observation at the shallow portion of the interplate megathrust contribute to expand the inventory of subducting rough structures possibly impacting the megathrust frictional slip behavior.</p><p>Further advanced processing include noise attenuation, 2D-SRME multiple attenuation, Kirchhoff pre-stack time migration and preserved amplitude pre-stack depth migration (PSDM) performed in the angle domain. The megathrust fault located at the top of the subducting oceanic crust is imaged down to 7 km depth at a distance of 28 km from the trench which will contribute to complement the high-resolution version of the slab’s top topography close to the trench. A joint analyze of this MCS line and the coincident 2D-OBS-refraction Vp model, reveal that variations in moho acoustic features at 15 km distance to the west of the trench correlates with a 30 km wide and >10-km-thick low Vp anomaly. Nearby previous experiment SISTEUR seismic lines are being reprocessed using the same workflow, in order to further investigate the deep crustal seismic structures over the Pedernales 2016 rupture zone.</p>


2021 ◽  
Author(s):  
Mikael Evain ◽  
Philippe Schnürle ◽  
Angélique Leprêtre ◽  
Fanny Verrier ◽  
Louise Watremez ◽  
...  

Abstract. Deep seismic acquisitions and a new kinematic study recently highlighted the presence of continental crust in both the southern Mozambique's Coastal Plain (MCP) and further offshore in the North Natal Valley (NNV). Such findings falsify previous geodynamic scenarios based on the kinematic overlap between Antarctica and Africa plates, thus profoundly impacting our understanding East-Gondwana break-up. Using an updated position of Antarctica with respect to Africa this study reconsider the formation mechanism of East-African margins and most specifically of the Limpopo margin (LM). Coincident wide-angle and multi-channel seismic data acquired within the PAMELA project are processed to image the sedimentary and deep crustal structure along a profile that runs from the northeastern NNV to the Mozambique basin (MB) striking through the LM. This dataset is combined with companion deep seismic profiles and industrial onshore-offshore seismic lines to provide a robust scenario for the formation and evolution of the LM. Our P-wave velocity model consists of an upper sedimentary sequence of weakly compacted sediments including intrusions and lava flows in the NNV while contourites and mass transport deposits dominates the eastern edge of the LM. This sequence covers a thick acoustic basement that terminates as a prominent basement high just west of the contourites and mass transport deposits domain. The acoustic basement has a seismic facies and velocity signature typical of a volcano-sedimentary basin and appears widespread over our study area extending toward the eastern MCP and NNV. Based on industrial well logs that calibrate our tectono-stratigraphic analysis we constrain its age to be pre-Neocomian. We further infer that either strike-slip or trans-tensional deformation occurred at the basement high which sustained uplift up to the Neocomian. At depth, the crystalline basement and uppermost mantle velocity structures show a progressive eastward crustal thinning of continental crust along the edge of the MCP/NNV and up to the location of the basement high. On its eastern side, however, a corridor of anomalous crust depicts the velocity signature of a volcanic basement overlying lower continental crust. We infer that strike-slip rifting along the LM was accommodated at depth by ductile shearing responsible for the thinning of the continental crust and an oceanward flow of lower crustal material. This process was accompanied by intense magmatism that extruded to form the volcanic basement and gave to the corridor its peculiar structure and mixed nature. The whole region remained at a relative high level and a shallow marine environment dominated during this period. Only after break-up in the MB decoupling occurred between the MCP/NNV and the corridor allowing for the latter to subside and being covered by deep marine sediments. We provide new insights into the early evolution and formation of the LM that takes into account both kinematic and geological constraints. This scenario favors strike-slip rifting along the LM meaning that no changes in extensional direction occurred between the rifting and the opening of the MB.


2021 ◽  
Author(s):  
R. Streich ◽  
L.Ó. Súilleabháin ◽  
P. Frantzen
Keyword(s):  

2020 ◽  
Vol 1 (2) ◽  
pp. 50
Author(s):  
Aris Buntoro ◽  
Muhammad Nurcholis ◽  
Basuki Rahmad ◽  
Allen Haryanto Lukmana ◽  
Ristiyan Ragil Putradianto

In general, the South Sumatra Regional Stratigraphy of the Baturaja Limestone Formation facies is deposited on the Buildup Carbonate (Reef) and the Limestone Clastic Carbonate of the Baturaja Formation which grows as a buildup reef on the platform in the Basement High (Horst) underneath is the Lemat Formation volcanic deposits. Referring to the facies model in general, the Baturaja Limestone Formation, the depositional environment starts from Shelf Lagoon Open Circulation - Winnowed Edge Sand - Organic Buildup - Fore Slope - Deep Shelf Margin - Open Sea Shelf - Basin, meaning that carbonate is formed starting from pure organic Cabonate Buildup Reef without / a little sludge / mud to the Carbonate Basin where more muddy / mud is present, this condition causes clay minerals to also more and more mix with Terigenous Clastics (Quartz, feldpar). The complexity of the Baturaja Limestone Formation requires fracture barrier analysis associated with well stimulation planning in order to increase oil productivity with the appropriate method.   Fracture barrier fracture analysis is an approach method to determine the depth interval that becomes a barrier in hydraulic fracturing by correlating the results of geomechanical analysis from well log data and mineralogical analysis from drill cuttings data, so that a commonly used well stimulation method can be selected, namely hydraulic fracturing, acidizing, and acid-fracturing.From the ternary diagram plot the XRD (bulk) analysis results show that the distribution of the main minerals (Quartz, Clay, Calcite) is more dominant in the ductile zone, hard to frac category. This shows that all the depth intervals in the OBF-01 and OBF-04 wells are more ductile, and are not recommended for hydraulic fracturing. From the XRD (bulk) analysis, Calcite mineral is more dominant, so for well stimulation work it is recommended to use acidizing or acid-fracturing.


2020 ◽  
Vol 8 (4) ◽  
pp. ST69-ST105
Author(s):  
Eleine Vence ◽  
Paul Mann

We have combined previous data from Mesozoic-Cenozoic outcrops in the Guajira Peninsula of northern Colombia with regional gravity, bathymetric, and seismic interpretations to demonstrate the existence of a 280 km long western extension of the Great Arc of the Caribbean (GAC) along the continental margin of Colombia. Seismic data reveal an 80–100 km wide domal-shaped basement high that exhibits internal chaotic seismic facies. This elongate and domal-shaped structure extends 1800 km from the Aves Ridge in the Caribbean Sea to the study area in offshore Colombia. The western extension of the GAC in Colombia and western Venezuela is buried by 700–3000 m of continental margin sedimentary rocks as a result of the GAC colliding earlier with the Colombian margin (Cretaceous-early Paleogene collision) than its subaerially exposed eastern extension along the Leeward Antilles ridge (late Paleogene-Neogene). Our compilation of geologic information from the entire GAC reveals that GAC magmatism occurred from 128 to 74 Ma with magmatism ages progressively younger toward the east. Six upper Eocene to recent marine seismic sequences overlying the domal basement high of the GAC have been mapped by our analysis of 2400 km of seismic lines and 12 well logs. Based on subsurface mapping correlated with well-log information and onland geology in the Guajira Peninsula, these six sequences record four major deformational events: (1) late Eocene rifting in an east–west direction produced half-grabens in the northern part of the area, (2) Oligocene transtension in the southern part of the area expressed by right-lateral Oligocene strike-slip faulting and extensional basin formation, (3) early-middle Miocene transtension, and (4) late Miocene-early Pliocene Andean uplift accompanied by rapid erosion and clastic infilling of offshore basins by the Magdalena delta and deep-sea fan. The significance of this basin framework is discussed for known and inferred hydrocarbon systems.


2020 ◽  
pp. 1-115
Author(s):  
Luis Pachón-Parra ◽  
Paul Mann ◽  
Nestor Cardozo

The Putumayo foreland basin (PFB) is an underexplored, hydrocarbon-bearing basin located in southernmost Colombia. The PFB forms a 250-km long segment of the 7000-km-long corridor of Late Cretaceous-Cenozoic foreland basins produced by eastward thrusting of the Andean mountain chain over Precambrian rocks of the South American craton. We use ∼4000 km of 2D seismic data tied to 28 exploratory wells to describe the basin-wide structure and stratigraphy of an underexplored hydrocarbon basin. Based on seismic interpretation and comparison with published works from the southward continuation of the PFB into Peru and Ecuador, three main across-strike, structural zones include: 1) the 20-km-wide, Western structural zone closest to the Andean mountain front characterized by inversion of older, Jurassic half-grabens during the late Miocene; 2) the 45-km-wide, Central structural zone characterized by moderately-inverted Jurassic half-grabens; and 3) the 120-km-wide, Eastern structural zone characterized by the 40-km-wide, N-S trending Caquetá arch. The five mainly clastic tectonosequences of the PFB include: 1) Lower Cretaceous pre-foreland basin deposits; 2) Upper Cretaceous-Paleocene foreland basin deposits; 3) Eocene foreland basin deposits related to the early uplift of the Eastern Cordillera; 4) Oligocene-Miocene underfilled, foreland basin deposits; and 5) Plio-Pleistocene overfilled, foreland basin deposits. We used 3D flexural modeling to identify the elastic thickness (Te) of the lithosphere below the PFB, in order to model the location of the sedimentary-related and tectonically-related forebulges of Cretaceous to Oligocene age. Flexural analysis shows two pulses of rapid, foreland-related subsidence first during the Late Cretaceous-early Paleocene and later during the Oligocene-Miocene. Despite the present-day oblique thrusting of the mountain front, flexure of the PFB basement has produced a tectonic forebulge now located in the Eastern structural zone and controls a basement high that forms the eastern, updip limit for most hydrocarbons found in the PFB.


Sign in / Sign up

Export Citation Format

Share Document