Comparison of Adaptive Gradient Descent Optimization Algorithms for Estimating Wavenumbers K in 2.5D Electrical Resistivity Modeling

Author(s):  
U. Mishra ◽  
A. Bansal ◽  
A. Mandal
2008 ◽  
Vol 34 (12) ◽  
pp. 1645-1654 ◽  
Author(s):  
Adam Pidlisecky ◽  
Rosemary Knight

Author(s):  
Jiaqi Zhang ◽  
Kai Zheng ◽  
Wenlong Mou ◽  
Liwei Wang

In this paper, we consider efficient differentially private empirical risk minimization from the viewpoint of optimization algorithms. For strongly convex and smooth objectives, we prove that gradient descent with output perturbation not only achieves nearly optimal utility, but also significantly improves the running time of previous state-of-the-art private optimization algorithms, for both $\epsilon$-DP and $(\epsilon, \delta)$-DP. For non-convex but smooth objectives, we propose an RRPSGD (Random Round Private Stochastic Gradient Descent) algorithm, which provably converges to a stationary point with privacy guarantee. Besides the expected utility bounds, we also provide guarantees in high probability form. Experiments demonstrate that our algorithm consistently outperforms existing method in both utility and running time.


Author(s):  
Arnulf Jentzen ◽  
Benno Kuckuck ◽  
Ariel Neufeld ◽  
Philippe von Wurstemberger

Abstract Stochastic gradient descent (SGD) optimization algorithms are key ingredients in a series of machine learning applications. In this article we perform a rigorous strong error analysis for SGD optimization algorithms. In particular, we prove for every arbitrarily small $\varepsilon \in (0,\infty )$ and every arbitrarily large $p{\,\in\,} (0,\infty )$ that the considered SGD optimization algorithm converges in the strong $L^p$-sense with order $1/2-\varepsilon $ to the global minimum of the objective function of the considered stochastic optimization problem under standard convexity-type assumptions on the objective function and relaxed assumptions on the moments of the stochastic errors appearing in the employed SGD optimization algorithm. The key ideas in our convergence proof are, first, to employ techniques from the theory of Lyapunov-type functions for dynamical systems to develop a general convergence machinery for SGD optimization algorithms based on such functions, then, to apply this general machinery to concrete Lyapunov-type functions with polynomial structures and, thereafter, to perform an induction argument along the powers appearing in the Lyapunov-type functions in order to achieve for every arbitrarily large $ p \in (0,\infty ) $ strong $ L^p $-convergence rates.


Author(s):  
Sergio Vidal-Beltrán ◽  
José Luis López Bonilla ◽  
Fernando Martínez Piñón ◽  
Jesús Yalja-Montiel

Recently, technologies based on neural networks (NNs) and deep learning have improved in different areas of Science such as wireless communications. This study demonstrates the applicability of NN-based receivers for detecting and decoding sparse code multiple access (SCMA) codewords. The simulation results reveal that the proposed receiver provides highly accurate predictions based on new data. Moreover, the performance analysis results of the primary optimization algorithms used in machine learning are presented in this study.


2017 ◽  
Vol 58 ◽  
Author(s):  
Ričardas Toliušis ◽  
Olga Kurasova

In this paper, an algorithm is proposed which uses facial landmarks to calculate normalized Euclidean distances between different facial parts and performs faces recognition by using Multilayer Perceptron. In order to determine the most effective model, different neural network parameters have been changed in an experimental way, such as hidden layers and the number of neurons, gradient descent optimization algorithms, error and activation functions, and different sets of distances.


2021 ◽  
Vol 33 (3) ◽  
pp. 373-385
Author(s):  
Duy Tran Quang ◽  
Sang Hoon Bae

Traffic congestion is one of the most important issues in large cities, and the overall travel speed is an important factor that reflects the traffic status on road networks. This study proposes a hybrid deep convolutional neural network (CNN) method that uses gradient descent optimization algorithms and pooling operations for predicting the short-term traffic congestion index in urban networks based on probe vehicles. First, the input data are collected by the probe vehicles to calculate the traffic congestion index (output label). Then, a CNN that uses gradient descent optimization algorithms and pooling operations is applied to enhance its performance. Finally, the proposed model is chosen on the basis of the R-squared (R2) and root mean square error (RMSE) values. In the best-case scenario, the proposed model achieved an R2 value of 98.7%. In addition, the experiments showed that the proposed model significantly outperforms other algorithms, namely the ordinary least squares (OLS), k-nearest neighbors (KNN), random forest (RF), recurrent neural network (RNN), artificial neural network (ANN), and convolutional long short-term memory (ConvLSTM), in predicting traffic congestion index. Furthermore, using the proposed method, the time-series changes in the traffic congestion status can be reliably visualized for the entire urban network.


Sign in / Sign up

Export Citation Format

Share Document