crustal magma
Recently Published Documents


TOTAL DOCUMENTS

131
(FIVE YEARS 44)

H-INDEX

31
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Luca D'Auria ◽  
Ivan Koulakov ◽  
Janire Prudencio ◽  
Ivan Cabrera-Perez ◽  
Jesus Ibanez ◽  
...  

Abstract Seismic tomography provides a window into magmatic plumbing systems; however, obtaining sufficient data for ‘real-time’ imaging is challenging. Until now, syn-eruptive tomography has not been successfully demonstrated. For the first time, we obtained high-resolution images of Earth's interior during an ongoing volcanic eruption. We used data from 11,349 earthquakes, most of which during La Palma eruption (19 September-13 December, 2021), to perform travel-time seismic tomography. We present high-precision earthquake relocations and 3D distributions of P and S-wave velocities highlighting the geometry of magma sources. We identified three distinct structures: (1) a shallow localised region (< 3 km) of hydrothermal alteration; (2) spatially extensive, consolidated, oceanic crust extending to ~10 km depth and; (3) a large (> 400 km3) sub-crustal magma-filled rock volume intrusion extending from ~7 to 25 km depth. Our results suggest that this large magma reservoir feeds the La Palma eruption continuously for almost three months. Prior to eruption onset, magma ascended from ~10 km depth to the surface in < 7 days. In the upper 3 km, melt migration is along the western contact between consolidated oceanic crust and altered hydrothermal material. Similar structural weaknesses along the eastern contact could potentially cause new eruptive centres in the future.


2021 ◽  
Vol 84 (1) ◽  
Author(s):  
R. S. J. Sparks ◽  
J. D. Blundy ◽  
K. V. Cashman ◽  
M. Jackson ◽  
A. Rust ◽  
...  

AbstractOver the last 20 years, new concepts have emerged into understanding the processes that lead to build up to large silicic explosive eruptions based on integration of geophysical, geochemical, petrological, geochronological and dynamical modelling. Silicic melts are generated within magma systems extending throughout the crust by segregation from mushy zones. Segregated melt layers become unstable and can assemble into ephemeral upper crustal magma chambers rapidly prior to eruption. In the next 10 years, we can expect major advances in dynamical models as well as in analytical and geophysical methods, which need to be underpinned in field research.


2021 ◽  
Author(s):  
Kyra Cutler ◽  
Sebastian Watt ◽  
Mike Cassidy ◽  
Amber Madden-Nadeau ◽  
Samantha Engwell ◽  
...  

The lateral collapse of Anak Krakatau volcano, Indonesia, in December 2018 highlighted the potentially devastating impacts of volcanic edifice instability. Nonetheless, the trigger for the Anak Krakatau collapse remains obscure. The volcano had been erupting for the previous six months, and although failure was followed by intense explosive activity, it is the period immediately prior to collapse that is potentially key in providing identifiable, pre-collapse warning signals. Here, we integrate physical, microtextural and geochemical characterisation of tephra deposits spanning the collapse period. We demonstrate that the first post-collapse eruptive phase (erupting juvenile clasts with a low microlite areal number density and relatively large microlites, reflecting a crystal-growth dominated regime) is best explained by instantaneous unloading of a relatively stagnant upper conduit. This was followed by the second post-collapse phase, on a timescale of hours, which tapped successively hotter and deeper magma batches, reflected in increasing plagioclase anorthite content and more mafic glass compositions, alongside higher calculated ascent velocities and decompression rates. The characteristics of the post-collapse products imply downward propagating destabilisation of the magma storage system as a response to collapse, rather than pre- collapse magma ascent triggering failure. Importantly, this suggests that the collapse was a consequence of longer-term processes linked to edifice growth and instability, and that no indicative changes in the magmatic system could have signalled the potential for incipient failure. Therefore, monitoring efforts may need to focus on integrating short- and long-term edifice growth and deformation patterns to identify increased susceptibility to lateral collapse. The post-collapse eruptive pattern also suggests a magma pressurisation regime that is highly sensitive to surface-driven perturbations, which led to elevated magma fluxes after the collapse and rapid edifice regrowth. Not only does rapid regrowth potentially obscure evidence of past collapses, but it also emphasises the finely balanced relationship between edifice loading and crustal magma storage.


2021 ◽  
pp. 105072
Author(s):  
Si-Qi Liu ◽  
Yuan-Chuan Zheng ◽  
Zeng-Qian Hou ◽  
Yang Shen

2021 ◽  
Author(s):  
Gregor Weber ◽  
Tom Sheldrake

Caldera-forming eruptions have the potential to impact global climate and induce drastic socioeconomic change. However, the criteria to identify volcanoes capable of producing large magnitude eruptions in the future are not well constrained. Here we compile and analyse data, revealing that volcanoes which have produced catastrophic caldera-forming eruptions in the past, typically show larger ranges of long-term erupted bulk-rock geochemistry compared to those that have not. This observation suggests that geochemical variability is a measure of a magmatic systems size. Using a 2D thermal model that simulates the growth and evolution of crustal-scale magmatic systems by stochastic injection of dikes and sills, we show that such behaviour is consistent with differences in crustal magma fluxes. Higher injection rates accumulate greater melt volumes in more extensive crustal plumbing systems, leading to more variable distributions of temperatures and thus melt composition. We conclude that compositional variability should be included in the catalogue of criteria to identify volcanic systems with greater probabilities of producing future large eruptions. Importantly, this allows to identify stratovolcanoes with caldera-like geochemical signatures, which have not yet been recognized as systems with greater probabilities of producing large magnitude eruptions.


2021 ◽  
pp. jgs2021-043
Author(s):  
Christian Haug Eide ◽  
Nick Schofield ◽  
John Howell ◽  
Dougal A Jerram

Igneous sheet-complexes transport magma through the crust, but most studies have focused on single segments of the magma-transport-system or have low resolution. In the Jameson Land Basin in East Greenland, reflection-seismic data and extensive outcrops give unparalleled constraints on mafic intrusions down to 15 km. This dataset shows how sill-complexes develop and how magma is transported from the mantle through sedimentary basins. The feeder zone of the sill-complex is a narrow zone below basin, where a magmatic underplate body impinges on thinned crust. Magma was transported through the crystalline crust through dykes. Seismic data and published geochemistry indicate magma was supplied from a magmatic underplate, without perceptible storage in crustal magma-chambers and crustal assimilation. As magma entered the sedimentary basin, it formed distributed, bowl-shaped sill-complexes throughout the basin. Large magma volumes in sills (4-20 times larger than the Skaergaard Intrusion), and few dykes highlight the importance of sills in crustal magma-transport. On scales smaller than 0.2 km, host-rock lithology, and particularly mudstone tensile strength-anisotropy, controls sill-architecture in the upper 10km of the basin, whereas sills are bowl-shaped below the brittle-ductile transition zone. On scales of kilometres and towards basin margins, tectonic stresses and lateral lithological changes dominate architecture of sills.Supplementary material:https://doi.org/10.6084/m9.figshare.c.5670470


Sign in / Sign up

Export Citation Format

Share Document