KINEMATICS PROPERTIES AND ENERGY COST OF BELOW-KNEE AMPUTEES

2001 ◽  
Vol 13 (02) ◽  
pp. 99-107 ◽  
Author(s):  
KUO-FENG HUANG ◽  
YOU-LI CHOU ◽  
FONG-CHIN SU ◽  
PEI-HIS CHOU

This study scientifically measures the dynamic gait characteristics and energy cost of six male below-knee amputees, three vascular and three traumatic, while wearing SACH, single axis and multiple axis prosthetic feet via six-camera motion analysis, metabolic measurement cart and heavy-duty treadmill. Subjective results are additionally determined via questionnaire after testing. Motion analysis showed statistically significant differences at p < 0.05 between the solid ankle cushion heel (SACH), single axis and multiple axis foot in the velocity, cadence, stride length end gait cycle. Significant differences were found in energy cost among the prosthetic feet tested, and significant changes in walking under different speeds and different inclines. Results provide quantitative and qualitative information about the dynamic performance of the various feet which can be helpful in prescribing the optimal prosthetic foot for individual amputees.

Author(s):  
Francy L. Sinatra ◽  
Stephanie L. Carey ◽  
Rajiv Dubey

Previous studies have been conducted to develop a biomechanical model for a human’s lower limb. Amongst them, there have been several studies trying to quantify the kinetics and kinematics of lower-limb amputees through motion analysis [5, 10, 11]. Currently, there are various designs for lower-limb prosthetic feet such as the Solid Ankle Cushion Heel (SACH) from Otto Bock (Minneapolis) or the Flex Foot from Ossur (California). The latter is a prosthetic foot that allows for flexibility while walking and running. Special interest has been placed in recording the capabilities of these energy-storing prosthetic feet. This has been done through the creation of biomechanical models with motion analysis. In these previous studies the foot has been modeled as a single rigid-body segment, creating difficulties when trying to calculate the power dissipated by the foot [5, 20, 21]. This project studies prosthetic feet with energy-storing capabilities. The purpose is to develop an effective way of calculating power by using a biomechanical model. This was accomplished by collecting biomechanical data using an eight camera VICON (Colorado) motion analysis system including two AMTI (BP-400600, Massachusetts) force plates. The marker set that was used, models the foot using several segments, hence mimicking the motion the foot undergoes and potentially leading to greater accuracy. By developing this new marker set, it will be possible to combine the kinematic and kinetic profile gathered from it with previous studies that determined metabolic information. This information will allow for the better quantification and comparison of the energy storage and return (ES AR) feet and perhaps the development of new designs.


Sign in / Sign up

Export Citation Format

Share Document