Toward Distributed QoS Driven Wireless Messaging Infrastructure

Author(s):  
Souheil Khaddaj ◽  
Bippin Makoond

The Telecoms market is demanding more services which involve an increased mobile accessibility to the Internet, real time video transmission, real time games, Voice over IP (VOIP), and business critical transactions such as billing transactions and banking services. Meeting these challenges requires the mobile operators to change the way they design their telephony and messaging systems. As the mobile market moves to become more service centric, rather than technology centric, Quality of Service (QoS) has grown to become imperative, since in the Telecoms innovative services are very often short lived, where the quality aspects of a system and the provided services contribute as key differentiators. Thus, the main focus of this chapter is based around the QoS issues which have led to the consideration of a distributed messaging model to address the challenges faced in the Telecoms industry.

2018 ◽  
Vol 1 (4) ◽  
pp. 51
Author(s):  
George Kokkonis ◽  
Kostas Psannis ◽  
Sotirios Kontogiannis ◽  
Petros Nicopolitidis ◽  
Manos Roumeliotis ◽  
...  

Real-time transferring of the haptic sense over the Internet is quite a challenging task. This paper outlines the proposed protocols for transferring haptic streams over the Internet. Moreover, it describes the Quality of Service requirements that a network has to fulfill in order to successfully use haptic interfaces with high update rates over the Internet. Extensive simulations and experiments for the performance evaluation of transport protocols for real-time transferring haptic data are carried out. Complements between simulation and real world experiments are discussed. The metrics that are measured for the performance evaluation are delay, jitter, throughput, efficiency, packet loss and one proposed by the authors, packet arrival deviation. The simulation tests reveal which protocols could be used for the transfer of real-time haptic data over the Internet.


2008 ◽  
pp. 1781-1788
Author(s):  
Christos Bouras ◽  
Apostolos Gkamas ◽  
Dimitris Primpas ◽  
Kostas Stamos

The heterogeneous network environment that Internet provides to real time applications as well as the lack of sufficient QoS (Quality of Service) guarantees, many times forces applications to embody adaptation schemes in order to work efficiently. In addition, any application that transmits data over the Internet should have a friendly behaviour towards the other flows that coexist in today’s Internet and especially towards the TCP flows that comprise the majority of flows. We define as TCP friendly flow, a flow that consumes no more bandwidth than a TCP connection, which is traversing the same path with that flow (Pandhye 1999).


2018 ◽  
Vol 14 (10) ◽  
pp. 155014771880568 ◽  
Author(s):  
Wu Jiawei ◽  
Qiao Xiuquan ◽  
Nan Guoshun

Recently, there has been a surge of the video services over the Internet. However, service providers still have difficulties in providing high-quality video streaming due to the problem of scheduling efficiency and the wide fluctuations of end-to-end delays in the existing multi-path algorithms. To solve these two problems affecting video transmission quality, networks are expected to have the capability of dynamically managing the network nodes for satisfying quality-of-service requirements, which is a challenging issue for media streaming applications. Against this changing network landscape, this article proposes a dynamic and adaptive multi-path routing algorithm under three constraints (packet loss, time delay, and bandwidth) that are based on software-defined network for centralized routing computations and real-time network state updating in multimedia applications. Compared with related multi-path routing proposals, dynamic and adaptive multi-path routing makes efficient use of the latest global network state information achieved by the OpenFlow controller and calculates the optimal routes dynamically according to the real-time status information of the link. Moreover, our proposed algorithm can significantly reduce the computational overhead of the controller while completing a fine-grained flow balance. Experimental results show that dynamic and adaptive multi-path routing significantly outperforms other existing scheduling approaches in achieving a 35%–70% improvement in quality-of-service.


Author(s):  
Christos Bouras ◽  
Apostolos Gkamas ◽  
Dimitris Primpas ◽  
Kostas Stamos

The heterogeneous network environment that Internet provides to real time applications as well as the lack of sufficient QoS (Quality of Service) guarantees, many times forces applications to embody adaptation schemes in order to work efficiently. In addition, any application that transmits data over the Internet should have a friendly behaviour towards the other flows that coexist in today’s Internet and especially towards the TCP flows that comprise the majority of flows. We define as TCP friendly flow, a flow that consumes no more bandwidth than a TCP connection, which is traversing the same path with that flow (Pandhye 1999).


2000 ◽  
Vol 21 (3-4) ◽  
pp. 127-134 ◽  
Author(s):  
V. Della Mea ◽  
C. A. Beltrami

The last five years experience has definitely demonstrated the possible applications of the Internet for telepathology. They may be listed as follows: (a) teleconsultation via multimedia e‐mail; (b) teleconsultation via web‐based tools; (c) distant education by means of World Wide Web; (d) virtual microscope management through Web and Java interfaces; (e) real‐time consultations through Internet‐based videoconferencing. Such applications have led to the recognition of some important limits of the Internet, when dealing with telemedicine: (i) no guarantees on the quality of service (QoS); (ii) inadequate security and privacy; (iii) for some countries, low bandwidth and thus low responsiveness for real‐time applications. Currently, there are several innovations in the world of the Internet. Different initiatives have been aimed at an amelioration of the Internet protocols, in order to have quality of service, multimedia support, security and other advanced services, together with greater bandwidth.The forthcoming Internet improvements, although induced by electronic commerce, video on demand, and other commercial needs, are of real interest also for telemedicine, because they solve the limits currently slowing down the use of Internet. When such new services will be available, telepathology applications may switch from research to daily practice in a fast way.


Sign in / Sign up

Export Citation Format

Share Document