Cross-Layer Design in Cognitive Radio Networks

Author(s):  
Bin Wang ◽  
Zhiqiang Wu ◽  
Zhongmei Yao

Radio spectrum has become a precious resource. Most frequency bands have been allocated for exclusive use in the US. However, studies have shown that a very large portion of the radio spectrum is unused or underused for long periods of time at a given geographic location. Therefore, allowing users without a license to operate in licensed bands while causing no interference to the license holder becomes a promising way to satisfy the fast growing need for spectrum resources. Dynamic spectrum access and cognitive radio are technologies for enabling opportunistic spectrum access and enhancing the efficiency and utilization of the spectrum. A cognitive radio adapts to the environment in which it operates by sensing the spectrum and then opportunistically exploiting unused and/or underused frequency bands in order to achieve certain performance goals. Due to the close coupling and interaction among protocol layers, the optimal design of opportunistic spectrum access and cognitive radio networks calls for a cross-layer approach that integrates signal processing and networking with regulatory policy making. This chapter introduces basic concepts, design issues involved, and some recent development in this emerging technological field. Future research directions are also briefly examined.

Author(s):  
Raza Umar ◽  
Wessam Mesbah

Cognitive radio based on dynamic spectrum access has emerged as a promising technology to meet the insatiable demand for radio spectrum by the emerging wireless applications. In this chapter, the authors address the problem of throughput-efficient spectrum access in Cognitive Radio Networks (CRNs) using Coalitional Game-theoretic framework. They model the problem of joint Coalition Formation (CF) and Bandwidth (BW) allocation as a CF game in partition form with non-transferable utility and present a variety of algorithms to dynamically share the available spectrum resources among competing Secondary Users (SUs). First, the authors present a centralized solution to reach a sum-rate maximizing Nash-stable network partition. Next, a distributed CF algorithm is developed through which SUs may join/leave a coalition based on their individual preferences. Performance analysis shows that the CF algorithms with optimal BW allocation provides a substantial gain in the network throughput over existing coalition formation techniques as well as the simple cases of singleton and grand coalition.


2016 ◽  
Vol 12 (18) ◽  
pp. 5053-5057
Author(s):  
K. Kaarthik ◽  
P.T. Sivagurunathan ◽  
S. Sivaranjani

In Wireless Communication, Radio Spectrum is doing a vital role; for the future need it should use efficient. The existing system, it is not possible to use it efficiently where the allocation of spectrum is done based on fixed spectrum access (FSA) policy. Several surveys prove that it show the way to inefficient use of spectrum. An innovative technique is needed for spectrum utilization effectively. Using Dynamic spectrum access (DSA) policy, available spectrum can be exploited. Cognitive radio arises to be an attractive solution which introduces opportunistic usage of the frequency bands that are not commonly occupied by licensed users. Cognitive radios promote open spectrum allocation which is a clear departure from habitual command and control allocation process for radio spectrum usage. In short, it permits the formation of “infrastructure-less” joint network clusters which is called Cognitive Radio Networks (CRN). Conversely the spectrum sensing techniques are needed to detect free spectrum. In this paper, different spectrum sensing techniques are analyzed.


2019 ◽  
Vol 16 (12) ◽  
pp. 34-46
Author(s):  
Ehab F. Badran ◽  
Amr A. Bashir ◽  
Amira I. Zaki ◽  
Waleed K. Badawi

Sign in / Sign up

Export Citation Format

Share Document