free spectrum
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 16)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Ramahlapane Lerato Moila ◽  
Mthulisi velempini

Abstract Spectrum mobility, cloud computing and the Internet of Things (IoTs) create large data sets, while the demand for more spectrum is increasing. Unfortunately, the spectrum is a scarce resource which is being underutilized by licensed users. The cognitive radio network, also known as intelligent radio, is a network that can adjust to environment changes and, detect available channels. It has emerged as a promising solution for the underutilization of the licensed spectrum and overcrowded free spectrum. Furthermore, given spectrum mobility, frequent link breakages impact negatively on the delivery of packets and the performance of the network. Hence there is need to address the routing problem. We therefore investigated which control methods can be utilized to improve the QoS provisioning in CRAHNs to minimize the signal overhead and to increase the achievable throughput.The study integrated the QoS requirements with optimized cuckoo search (OCS) algorithm to enhance the ad hoc on-demand distance vector (AODV) algorithm to establish a scheme we refer to as OCS-AODV. NS 2 simulation were run on Linux operating system. The comparative results show that the proposed scheme performed well in terms of end-to-end delay and throughput. However, the scheme does not backup alternative paths which can be used in the event of link breakages. The route discovery has to be re-initiated again. Though the route discovery process is faster because of the capability of the CS technique, it still degrades the performance of the scheme.


2021 ◽  
Author(s):  
Nikhil Marriwala ◽  
Himanshu Punj ◽  
Sunita Panda ◽  
Inderjeet Kaur ◽  
Deepak Rathore

Abstract This is the era of Intelligent cognitive radio network technology that provides the available spectrum with efficient utilization. Cognitive Radio technology must promise to allow interference-free spectrum access by users. The paper discusses the several attacks and motives of attacks. The authentication mechanism role to prevent the attacks for hassle-free spectrum utilization is demonstrated. In this paper, resolving the cognitive network security issues by the authentication mechanism and the methods and need of authentication is discussed. This paper addresses the research challenges in the way of securing the cognitive radio network and countermeasures in CRN security strategies. Cognitive radio is an empowering innovation that guarantees to achieve spectrum utilization. In cognitive radio networks, several security threats affect the process of cognitive radio. Spectrum sensing data falsification (SSDF) attack is most disruptive in which the malicious users degrade the decision-making process by sending the false sensing reports to data fusion centres thus preventing honest users from utilizing the spectrum. Hence, security is a very important issue in cognitive radio networks that needs to be addressed for proper utilization of available spectrum by the users. Cognitive radio technology must promise secure spectrum dynamic access to users. In this paper, to counter the SSDF attack, the trust-based security mechanism is demonstrated to authenticate the honest users and it is observed that the proposed framework in the MATLAB environment is efficient and able to detect malicious users. Cognitive radio technology is the strategy applied to the spectrum to make it efficient for wireless communication. The strategy is an intelligent way to access the spectrum as it can learn its environment and make decisions by easy adaptation of operating parameters. The multiple nodes scenario is a good perspective. Software-defined radio is an essential component of cognitive radio Here, secondary users can access the spectrum to primary users whenever their vacant spectrum is available. The initial step is to sense the spectrum available further steps are spectrum decision making, spectrum management, and spectrum mobility. The network is vulnerable to various attacks on spectrum sensing and policy protocols which lead to disturbing functionality of cognitive radio technology. The defence mechanism based on public-key cryptography is proposed in which PU is authenticated by appending signature provided to PU signal. Authentication with a tag to the primary users is another perspective proposed. CRN technology should provide integrity, confidentiality and authenticity to the users.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3464
Author(s):  
Ramahlapane Lerato Moila ◽  
Mthulisi Velempini

A cognitive radio ad hoc network (CRAHN) is a mobile network that can communicate without any form of centralized infrastructure. The nodes can learn about the environment and make routing decisions. Furthermore, distributed computing, spectrum mobility, and the Internet of Things have created large data sets, which require more spectrum for data transmission. Unfortunately, the spectrum is a scarce resource that underutilized by licensed users, while unlicensed users are overcrowding the free spectrum. The CRAHNs technology has emerged as a promising solution to the underutilization of the spectrum. The focus of this study is to improve the effectiveness and energy consumption of routing in order to address the routing problem of CRAHNs through the implementation of the optimized cuckoo search algorithm. In CRAHNs, the node and spectrum mobility cause some frequent link breakages within the network, which degrades the performance of the routing protocols. This requires a routing solution to this routing problem. The proposed scheme was implemented in NS2 installed in Linux operating system, with a cognitive radio cognitive network (CRCN) patch. From the experimental results, we observed that the proposed OCS-AODV scheme outperformed CS-DSDV and ACO-AODV schemes. It obtained at least 3.87% packet delivery ratio and 2.56% and lower packets lost. The scheme enabled the mobile nodes to adjust accordingly to minimize energy consumption. If not busy, they switch to an idle state to save battery power.


2021 ◽  
Vol 13 (10) ◽  
pp. 1931
Author(s):  
Hyung-Chul Lim ◽  
Chul-Sung Choi ◽  
Ki-Pyoung Sung ◽  
Jong-Uk Park ◽  
Mansoo Choi

Optical satellite communication has received considerable attention as a promising alternative to radio frequency communication because of its potential advantages including higher data rates and license free spectrum. Many studies have conducted performance analyses of optical communication channels, but few have investigated beacon tracking channels under atmospheric turbulence. The centroid accuracy of beacon tracking channels is limited by not only noise sources, but also a finite delay time, which also fluctuates due to atmospheric turbulence. Consequently, the centroid error is an important figure of merit when evaluating the performance of a beacon tracking system. In this study, the closed-form expressions were derived for average centroid error and fade probability, based on received photoelectron counts depending on exposure time, taking into account the log-normal tracking channels. We analyzed the angular positioning performance of beacon tracking detectors onboard small satellites in the presence of atmospheric turbulence, in terms of centroid error and fade probability. We found that an optimal exposure time exists, which minimizes the centroid error, and that fade probability is inversely proportional to the exposure time. These are significant properties to consider in the design of beacon tracking systems.


Symmetry ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 147
Author(s):  
Surendra Solanki ◽  
Vasudev Dehalwar ◽  
Jaytrilok Choudhary

The detection of primary user signals is essential for optimum utilization of a spectrum by secondary users in cognitive radio (CR). The conventional spectrum sensing schemes have the problem of missed detection/false alarm, which hampers the proper utilization of spectrum. Spectrum sensing through deep learning minimizes the margin of error in the detection of the free spectrum. This research provides an insight into using a deep neural network for spectrum sensing. A deep learning based model, “DLSenseNet”, is proposed, which exploits structural information of received modulated signals for spectrum sensing. The experiments were performed using RadioML2016.10b dataset and the outcome was studied. It was found that “DLSenseNet” provides better spectrum detection than other sensing models.


2021 ◽  
Vol 13 (2) ◽  
pp. 253
Author(s):  
Mustafa Aksoy ◽  
Hamid Rajabi ◽  
Pranjal Atrey ◽  
Imara Mohamed Nazar

The National Aeronautics and Space Administration’s (NASA’s) Soil Moisture Active–Passive (SMAP) radiometer has been providing geolocated power moments measured within a 24 MHz band in the protected portion of L-band, i.e., 1400–1424 MHz, with 1.2 ms and 1.5 MHz time and frequency resolutions, as its Level 1A data. This paper presents important spectral and temporal properties of the radio frequency interference (RFI) in the protected portion of L-band using SMAP Level 1A data. Maximum and average bandwidth and duration of RFI signals, average RFI-free spectrum availability, and variations in such properties between ascending and descending satellite orbits have been reported across the world. The average bandwidth and duration of individual RFI sources have been found to be usually less than 4.5 MHz and 4.8 ms; and the average RFI-free spectrum is larger than 20 MHz in most regions with exceptions over the Middle East and Central and Eastern Asia. It has also been shown that, the bandwidth and duration of RFI signals can vary as much as 10 MHz and 10 ms, respectively, between ascending and descending orbits over certain locations. Furthermore, to identify frequencies susceptible to RFI contamination in the protected portion of L-band, observed RFI signals have been assigned to individual 1.5 MHz SMAP channels according to their frequencies. It has been demonstrated that, contrary to common perception, the center of the protected portion can be as RFI contaminated as its edges. Finally, there have been no significant correlations noted among different RFI properties such as amplitude, bandwidth, and duration within the 1400–1424 MHz band.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Edoardo Lauria ◽  
Pedro Liendo ◽  
Balt C. van Rees ◽  
Xiang Zhao

Abstract For a single free scalar field in d ≥ 2 dimensions, almost all the unitary conformal defects must be ‘trivial’ in the sense that they cannot hold interesting dynamics. The only possible exceptions are monodromy defects in d ≥ 4 and co-dimension three defects in d ≥ 5. As an intermediate result we show that the n-point correlation functions of a conformal theory with a generalized free spectrum must be those of the generalized free theory.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4530
Author(s):  
Yanping Chen ◽  
Junxian Luo ◽  
Shen Liu ◽  
Mengqiang Zou ◽  
Shengzhen Lu ◽  
...  

We demonstrate a high-strength strain sensor based on a micro-air-cavity reshaped through repeating arc discharge. The strain sensor has a micro-scale cavity, approximate plane reflection, and large wall thickness, contributing to a broad free spectrum range ~36 nm at 1555 nm, high fringe contrast ~38 dB, and super-high mechanical robustness, respectively. A sensitivity of ~2.39 pm/με and a large measurement range of 0 to 9800 με are achieved for this strain sensor. The strain sensor has a high strength, e.g., the tensile strain applied the sensor is up to 10,000 με until the tested the single-mode fiber is broken into two sections. In addition, it exhibited low thermal sensitivity of less than 1.0 pm/°C reducing the cross-sensitivity between tensile strain and temperature.


2020 ◽  
Vol 10 (13) ◽  
pp. 4660 ◽  
Author(s):  
Tao Xu ◽  
Yu-Sheng Lin

We present a tunable terahertz (THz) metamaterial using an electric split-ring resonator (eSRR), which exhibits polarization-sensitive characteristics. The proposed eSRR is composed of double symmetrical semicircles and two central metal bars. By changing the lengths of two metal bars, the electromagnetic responses can be tuned and switched between dual-band and triple-band resonances in transverse magnetic (TM) mode. Furthermore, by moving the bottom metal bar to change the gap between the two metal bars, the first resonance is stable at 0.39 THz, and the second resonance is gradually blue-shifted from 0.83 to 1.33 THz. The tuning range is 0.50 THz. This means that the free spectrum ranges (FSR) could be broadened by 0.50 THz. This proposed device exhibits a dual-/triple-band switch, tunable filter, tunable FSR and polarization-dependent characteristics. It provides an effective approach to perform tunable polarizer, sensor, switch, filter and other optoelectronics in THz-wave applications.


Sign in / Sign up

Export Citation Format

Share Document