Teams

Author(s):  
Dominic Taylor

The success and sustainability of the Integrated Operations (IO) initiative within the Oil and Gas industry is discussed in relation to the ways people work together and the organisational structures which support that work. Whilst collaboration has become a defining concept in the industry for optimal working, this chapter argues that other characteristics found in the concept of teamwork are of equal importance in achieving the aims of the IO project. Teams and high-performing teams can provide a framework for understanding how groups of people within the workplace can respond to the dynamic environments of the oil and gas industry and fulfill the objectives of IO. The chapter presents some tactics for creating high-performing teams within this domain and presents two case studies to show the importance of teamwork in realizing the goals of Integrated Operations.

2021 ◽  
Author(s):  
Jamie Dorey ◽  
Georgy Rassadkin ◽  
Douglas Ridgway

Abstract The field experience in the continental US suggests that approximately 33% of plug and abandonment operations are non-routine, and 5% require re-entry (Greer C.R., 2018). In some scenarios, the most cost-efficient option for the intervention is drilling an intercept well to re-enter the target well or multiple wells externally using advanced survey management and magnetic ranging techniques. This paper presents the methods applied of relief well methodologies from the planning to execution of a complex multiple-well abandonment project. Improvements in Active Magnetic Ranging sensor design and applications have improved the availability of highly precise tools for the purpose of locating and intercepting wellbores where access is not possible. These instruments were commonplace on relief well interventions, however, have found a new application in solving one of the major issues facing the oil and gas industry. Subsurface abandonments are a complex task that requires a robust methodology. In this paper, we describe the techniques that have been built upon the best practices from industry experience (ISCWSA WISC eBook). This paper also illustrates how the combination of advanced survey management, gyro surveying, and magnetic ranging can be used following the best industry practices for fast and cost-efficient non-routine plug and abandonment. Case studies of several abandonment projects are presented showing the various technical challenges which are common on idle and legacy wells. The projects include wells that are currently under the ownership of an operator and orphaned wells that have been insufficiently abandoned and left idle over many decades. The case studies outline how the application of relief well methodologies to the execution of complex sub surface interventions led to the successful outcomes of meeting environmental and government regulations for wellbore abandonment. This includes performing multiple zonal isolations between reservoirs, water zones and preventing oil and gas seepage to the surface. The projects and their outcomes prove economically viable strategies for tackling the growing issue of idle and orphaned wells globally in a fiscally responsible manner. Combining industry best practice methods for relief well drilling, along with the technological advancements in magnetic ranging systems is a solution for one of the largest dilemmas facing the oil and gas industry in relation to idle and orphaned wellbores. These applications allow previously considered impossible abandonments to be completed with a high probability of long-term success in permanent abandonment.


Author(s):  
John Henderson ◽  
Vidar Hepsø ◽  
Øyvind Mydland

The concept of a capability platform can be used to argue how firms engage networked relationships to embed learning/performance into distinctive practices rather than focusing only on technology. In fact the capability language allows us to unpack the role of technology by emphasizing its interaction with people, process, and governance issues. The authors address the importance of a capability approach for Integrated Operations and how it can improve understanding of how people, process, technology, and governance issues are connected and managed to create scalable and sustainable practices. The chapter describes the development of capabilities as something that is happening within an ecology. Using ecology as a metaphor acknowledges that there is a limit to how far it is possible to go to understand organizations and the development of capabilities in the oil and gas industry as traditional hierarchies and stable markets. The new challenge that has emerged with integrated operations is the need for virtual, increasingly global, and network based models of work. The authors couple the ecology approach with a capability platform approach.


2019 ◽  
Vol 59 (2) ◽  
pp. 762
Author(s):  
Mohammad B. Bagheri ◽  
Matthias Raab

Carbon capture utilisation and storage (CCUS) is a rapidly emerging field in the Australian oil and gas industry to address carbon emissions while securing reliable energy. Although there are similarities with many aspects of the oil and gas industry, subsurface CO2 storage has some unique geology and geophysics, and reservoir engineering considerations, for which we have developed specific workflows. This paper explores the challenges and risks that a reservoir engineer might face during a field-scale CO2 injection project, and how to address them. We first explain some of the main concepts of reservoir engineering in CCUS and their synergy with oil and gas projects, followed by the required inputs for subsurface studies. We will subsequently discuss the importance of uncertainty analysis and how to de-risk a CCUS project from the subsurface point of view. Finally, two different case studies will be presented, showing how the CCUS industry should use reservoir engineering analysis, dynamic modelling and uncertainty analysis results, based on our experience in the Otway Basin. The first case study provides a summary of CO2CRC storage research injection results and how we used the dynamic models to history match the results and understand CO2 plume behaviour in the reservoir. The second case study shows how we used uncertainty analysis to improve confidence on the CO2 plume behaviour and to address regulatory requirements. An innovative workflow was developed for this purpose in CO2CRC to understand the influence of each uncertainty parameter on the objective functions and generate probabilistic results.


2011 ◽  
Vol 51 (2) ◽  
pp. 716
Author(s):  
Peter Smith ◽  
Iain Paton

The large number of wells associated with typical coal seam gas (CSG) developments in Australia has changed the paradigm for field management and optimisation. Real time data access, automation and optimisation—which have been previously considered luxuries in conventional resources—are key to the development and operation of fields, which can easily reach more than 1,000 wells. The particular issue in Australia of the shortage of skilled labour and operators has increased pressure to automate field operations. This extended abstract outlines established best practices for gathering the numerous data types associated with wells and surface equipment, and converting that data into information that can inform the decision processes of engineers and managers alike. There will be analysis made of the existing standard, tools, software and data management systems from the conventional oil and gas industry, as well as how some of these can be ported to the CSG fields. The need to define industry standards that are similar to those developed over many years in the conventional oil and gas industry will be discussed. Case studies from Australia and wider international CSG operations will highlight the innovative solutions that can be realised through an integrated project from downhole to office, and how commercial off the shelf solutions have advantages over customised one-off systems. Furthermore, case studies will be presented from both CSG and conventional fields on how these enabling technologies translate into increased production, efficiencies and lift optimisation and move towards the goal of allowing engineers to make informed decisions as quickly as possible. Unique aspects of CSG operations, which require similarly unique and innovative solutions, will be highlighted in contrast to conventional oil and gas.


Author(s):  
Grethe O. Ose ◽  
Trygve J. Steiro

Abstract Integrated operations (IO) is an ongoing change process in the oil and gas industry. New technological opportunities enable working in new ways that involve an integration of onshore and offshore personnel. This paper analyzes the results of two rounds of data gathering in an onshore drilling support center, in terms of the development of resilience. The first round took place in 2004/2005 and the second in 2012. This study presents a framework for the analysis of resilience and has used the case company as a mean of testing the framework. Our findings indicate that the support center has taken a huge step in the direction of becoming more resilient. The drilling company has tested a number of designs and sizes of support centers, each of which has different pros and cons. For the drilling discipline to develop resilience, it is essential that the number of rigs supported by a center is not too large, as they must not become involved in too many rigs and drilling operations. Our findings also indicate that the suggested framework provides a good overall picture of the development of resilience in the case company.


Beta ◽  
2012 ◽  
Vol 26 (01) ◽  
pp. 40-62
Author(s):  
Tom Rosendahl ◽  
Asbjørn Egir ◽  
Lars Kristian Due-Sørensen ◽  
Hans Jørgen Ulsund

Sign in / Sign up

Export Citation Format

Share Document