An Analytical Framework for Resilience Exemplified With a Real-Time Operational Center

Author(s):  
Grethe O. Ose ◽  
Trygve J. Steiro

Abstract Integrated operations (IO) is an ongoing change process in the oil and gas industry. New technological opportunities enable working in new ways that involve an integration of onshore and offshore personnel. This paper analyzes the results of two rounds of data gathering in an onshore drilling support center, in terms of the development of resilience. The first round took place in 2004/2005 and the second in 2012. This study presents a framework for the analysis of resilience and has used the case company as a mean of testing the framework. Our findings indicate that the support center has taken a huge step in the direction of becoming more resilient. The drilling company has tested a number of designs and sizes of support centers, each of which has different pros and cons. For the drilling discipline to develop resilience, it is essential that the number of rigs supported by a center is not too large, as they must not become involved in too many rigs and drilling operations. Our findings also indicate that the suggested framework provides a good overall picture of the development of resilience in the case company.

2021 ◽  
Author(s):  
Henry Ijomanta ◽  
Lukman Lawal ◽  
Onyekachi Ike ◽  
Raymond Olugbade ◽  
Fanen Gbuku ◽  
...  

Abstract This paper presents an overview of the implementation of a Digital Oilfield (DOF) system for the real-time management of the Oredo field in OML 111. The Oredo field is predominantly a retrograde condensate field with a few relatively small oil reservoirs. The field operating philosophy involves the dual objective of maximizing condensate production and meeting the daily contractual gas quantities which requires wells to be controlled and routed such that the dual objectives are met. An Integrated Asset Model (IAM) (or an Integrated Production System Model) was built with the objective of providing a mathematical basis for meeting the field's objective. The IAM, combined with a Model Management and version control tool, a workflow orchestration and automation engine, A robust data-management module, an advanced visualization and collaboration environment and an analytics library and engine created the Oredo Digital Oil Field (DOF). The Digital Oilfield is a real-time digital representation of a field on a computer which replicates the behavior of the field. This virtual field gives the engineer all the information required to make quick, sound and rational field management decisions with models, workflows, and intelligently filtered data within a multi-disciplinary organization of diverse capabilities and engineering skill sets. The creation of the DOF involved 4 major steps; DATA GATHERING considered as the most critical in such engineering projects as it helps to set the limits of what the model can achieve and cut expectations. ENGINEERING MODEL REVIEW, UPDATE AND BENCHMARKING; Majorly involved engineering models review and update, real-time data historian deployment etc. SYSTEM PRECONFIGURATION AND DEPLOYMENT; Developed the DOF system architecture and the engineering workflow setup. POST DEPLOYMENT REVIEW AND UPDATE; Currently ongoing till date, this involves after action reviews, updates and resolution of challenges of the DOF, capability development by the operator and optimizing the system for improved performance. The DOF system in the Oredo field has made it possible to integrate, automate and streamline the execution of field management tasks and has significantly reduced the decision-making turnaround time. Operational and field management decisions can now be made within minutes rather than weeks or months. The gains and benefits cuts across the entire production value chain from improved operational safety to operational efficiency and cost savings, real-time production surveillance, optimized production, early problem detection, improved Safety, Organizational/Cross-discipline collaboration, data Centralization and Efficiency. The DOF system did not come without its peculiar challenges observed both at the planning, execution and post evaluation stages which includes selection of an appropriate Data Gathering & acquisition system, Parts interchangeability and device integration with existing field devices, high data latency due to bandwidth, signal strength etc., damage of sensors and transmitters on wellheads during operations such as slickline & WHM activities, short battery life, maintenance, and replacement frequency etc. The challenges impacted on the project schedule and cost but created great lessons learnt and improved the DOF learning curve for the company. The Oredo Digital Oil Field represents a future of the oil and gas industry in tandem with the industry 4.0 attributes of using digital technology to drive efficiency, reduce operating expenses and apply surveillance best practices which is required for the survival of the Oil and Gas industry. The advent of the 5G technology with its attendant influence on data transmission, latency and bandwidth has the potential to drive down the cost of automated data transmission and improve the performance of data gathering further increasing the efficiency of the DOF system. Improvements in digital integration technologies, computing power, cloud computing and sensing technologies will further strengthen the future of the DOF. There is need for synergy between the engineering team, IT, and instrumentation engineers to fully manage the system to avoid failures that may arise from interface management issues. Battery life status should always be monitored to ensure continuous streaming of real field data. New set of competencies which revolves around a marriage of traditional Petro-technical skills with data analytic skills is required to further maximize benefit from the DOF system. NPDC needs to groom and encourage staff to venture into these data analytic skill pools to develop knowledge-intelligence required to maximize benefit for the Oredo Digital Oil Field and transfer this knowledge to other NPDC Asset.


Author(s):  
Maria V Clavijo ◽  
Adriana M Schleder ◽  
Enrique Lopez Droguett ◽  
Marcelo R Martins

Currently, a Dynamic Position (DP) System is commonly used for offshore operations. However, DP failures may generate environmental and economic losses; thus, this paper presents the Reliability, Availability and Maintainability (RAM) analysis for two different generations of DP system (DP2 and DP3) used in drilling operations. In addition to the RAM analysis, the approach proposed herein considers the uncertainties present in the equipment failure data and provides more information about criticality equipment ratings and probability density functions (pdf) of the repair times. The reliability analysis shows that, for 3 months of operation, the total failure probability of the DP2 system is 1.52% whereas this probability for the DP3 system is only 0.16%. The results reveal that the bus-bar is the most critical equipment of the DP2 system, whereas the wind sensor represents the priority equipment in the DP3 system. Using 90% confidence level, each DP configuration was evaluated for a 1-year operation, finding a reliability mean equal to 70.39% and 86.77% for the DP2 system and the DP3 system, respectively. The DP2 system asymptotic availability tends to present a constant value of 99.98% whereas for the DP3 system, it tends to be 99.99%. Finally, the maintainability analysis allows concluding that the mean time for system repair is expected to be 3.6 h. This paper presents a logical pathway for analysts, operators, and reliability engineers of the oil and gas industry.


Author(s):  
John Henderson ◽  
Vidar Hepsø ◽  
Øyvind Mydland

The concept of a capability platform can be used to argue how firms engage networked relationships to embed learning/performance into distinctive practices rather than focusing only on technology. In fact the capability language allows us to unpack the role of technology by emphasizing its interaction with people, process, and governance issues. The authors address the importance of a capability approach for Integrated Operations and how it can improve understanding of how people, process, technology, and governance issues are connected and managed to create scalable and sustainable practices. The chapter describes the development of capabilities as something that is happening within an ecology. Using ecology as a metaphor acknowledges that there is a limit to how far it is possible to go to understand organizations and the development of capabilities in the oil and gas industry as traditional hierarchies and stable markets. The new challenge that has emerged with integrated operations is the need for virtual, increasingly global, and network based models of work. The authors couple the ecology approach with a capability platform approach.


Author(s):  
Ricardo de Lepeleire ◽  
Nicolas Rogozinski ◽  
Hank Rogers ◽  
Daniel Ferrari

Within the oil and gas industry, significant costs are often incurred by the operating company during the well-construction phase of drilling operations. Specifically, the operators cost to drill a well can cost tens or hundreds of millions of USD. One specific area where significant changes in drilling operations have occurred is in the offshore environment, specifically operations from mobile offshore drilling units (MODUs). With the ever-increasing demand for oil and gas, operators globally have increased drilling budgets in an effort to meet forecasted demand. However, the increased budgets are often eroded or offset by increasing drilling costs. Therefore, operators are continually in search of new technology, processes, or procedures to help improve drilling operations and overall operational efficiencies. One Latin America operator identified a common operation as a possible area where operational cost could be easily reduced through the implementation of systems that allow the manipulation of valve manifolds remotely. Additionally, operating such valve manifolds remotely enhanced operational safety for personnel, which was an equally important consideration. This paper details the evaluation of existing equipment and procedures and a process used to develop a new remote-control system using a machine logic control (MLC) that has been designed, built, tested, and deployed successfully on MODUs operating in Latin America.


2020 ◽  
pp. 1-25
Author(s):  
Dimitris Oikonomou ◽  
Ehsan Zabihi Naeini ◽  
Behzad Alaei ◽  
Eirik Larsen

Cloud computing has become an integral part of our daily life and work. In the oil and gas industry, cloud computing is becoming increasingly attractive to experts, operators and software companies. However, we believe there is still some level of mystery for many geoscientists in what cloud computing can actually offer, what the pros and cons are and how it is different to the preceding technologies. We attempt to explain some of the mysteries around the concept of cloud computing and furthermore discuss the benefits and shortcomings of cloud for the oil and gas industry.


Beta ◽  
2012 ◽  
Vol 26 (01) ◽  
pp. 40-62
Author(s):  
Tom Rosendahl ◽  
Asbjørn Egir ◽  
Lars Kristian Due-Sørensen ◽  
Hans Jørgen Ulsund

2021 ◽  
Author(s):  
Emmanuel Ayodele ◽  
Oshogwe Akpogomeh ◽  
Freda Amuah ◽  
Gloria Maduabuchi

Abstract Nigeria has oil and gas as her major source of revenue, accounting for more than 80% of her foreign exchange, with the AfCFTA, that has been signed and ratified not just by Nigeria but by other African countries taking away tariffs on goods and services produced across the continent irrespective of the market where it's been sold. The AfCFTA being the second largest free trade agreement in the history of World Trade Organization is aimed at uniting African markets. This paper aims to review the framework of the continental free trade agreement, it pros and cons, its grey area, and its impact on the Oil and Gas Industry in Nigeria. The impact of the agreement on the local industries servicing the oil and gas industry is considered as well. The paper reviews the possible advantage of the AfCFTA on the Nigerian oil and gas market. The possible threats to nationalization in the oil and gas industry due to the availability of cheap labour and technical expertise across the continent in the country is analyzed. Solutions to protect the oil and gas industry in Nigeria is recommended as well.


2021 ◽  
Vol 11 (5) ◽  
pp. 2157-2178
Author(s):  
David Oluwasegun Afolayan ◽  
Adelana Rasak Adetunji ◽  
Azikiwe Peter Onwualu ◽  
Oghenerume Ogolo ◽  
Richard Kwasi Amankwah

AbstractSuccessful drilling operations are dependent on the properties of the drilling fluid used to drill wells. Barite is used as a weighting agent during the preparation of drilling fluid. Over the years, oil and gas industry in Nigeria has been depending mainly on imported barite for drilling operations, whereas the country has huge deposits of barite. There is the need to assess the properties of the locally sourced barite for their suitability in drilling fluid formulation. This study presents the local processing methods of barite and examines the crude and on-the-site processed barite’s physio-chemical properties. These parameters were compared with American Petroleum Institute and Department of Petroleum Resources standards. XRD results show that on-the-site beneficiated barite has 87.79% BaSO4, 6.66% silica, 0.03% total soluble salt, 1.39% Fe2O3, and 1.603% heavy metals. Chemical analysis indicated that the pH, moisture content, metallic content such as Ca, Pb, Zn, Mg, Cu, and Cd minerals, and extractable carbonates were within the standard specified for usage as a drilling fluid weighting agent. The analysed crude barite samples were basic, within the pH of 8.3 and 8.6. Locally processed barite has lower Fe, Pb, Cd, and Cu content compared to industrially accepted barite. The specific gravity increased from 4.02 ± 0.07 to 4.15 ± 0.13, and the hardness reduced potentially from 5 Mohr to 3.5 Mohr on the hardness scale. The amount of impurities was sufficiently low, and the specific gravity of the samples improved to meet the needs of any drilling operation and compare favourably with industrially accepted barite.


Sign in / Sign up

Export Citation Format

Share Document