Spectrum Sensing in Emergency Cognitive Radio Ad Hoc Networks

Author(s):  
Sasirekha GVK ◽  
Jyotsna Bapat

Ad hoc networks are infrastructure less networks which are self organizing and adaptive. Such networks can be used in emergency situations like disaster management and military applications. Usage of cognitive radios as the wireless terminals in ad hoc networks in emergency situations has distinct advantages. Better bandwidth, interoperability, avoidance of interference, and ant-jamming capabilities are a few such advantages. Ad hoc networks with cognitive radios are wireless terminals used in emergency situations and can be referred to as Emergency Cognitive Radio Ad Hoc Networks (Emergency CRAHNs). In this chapter, the authors discuss emergency CRAHNs and the specific requirements that must be met by the spectrum sensing mechanism used by them. In particular, the authors discuss collaborative spectrum sensing methodology; where in multiple cognitive radios operate together such that reliability of spectrum sensing in improved. This collaborative sensing in ad hoc networks can be either of centralized or distributed architectures, both of which are discussed in this chapter.

2013 ◽  
pp. 944-960
Author(s):  
Sasirekha GVK ◽  
Jyotsna Bapat

Ad hoc networks are infrastructure less networks which are self organizing and adaptive. Such networks can be used in emergency situations like disaster management and military applications. Usage of cognitive radios as the wireless terminals in ad hoc networks in emergency situations has distinct advantages. Better bandwidth, interoperability, avoidance of interference, and ant-jamming capabilities are a few such advantages. Ad hoc networks with cognitive radios are wireless terminals used in emergency situations and can be referred to as Emergency Cognitive Radio Ad Hoc Networks (Emergency CRAHNs). In this chapter, the authors discuss emergency CRAHNs and the specific requirements that must be met by the spectrum sensing mechanism used by them. In particular, the authors discuss collaborative spectrum sensing methodology; where in multiple cognitive radios operate together such that reliability of spectrum sensing in improved. This collaborative sensing in ad hoc networks can be either of centralized or distributed architectures, both of which are discussed in this chapter.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Hurmat Ali Shah ◽  
Insoo Koo ◽  
Kyung Sup Kwak

Spectrum sensing is of the utmost importance to the workings of a cognitive radio network (CRN). The spectrum has to be sensed to decide whether the cognitive radio (CR) user can transmit or not. Transmitting on unoccupied spectrum becomes a hard task if energy-constrained networks are considered. CRNs are ad hoc networks, and thus, they are energy-limited, but energy harvesting can ensure that enough energy is available for transmission, thus enabling the CRN to have a theoretically infinite lifetime. The residual energy, along with the sensing decision, determines the action in the current time slot. The transmission decision has to be grounded on the sensing outcome, and thus, a combined sensing–transmission framework for the CRN has to be considered. The sensing–transmission framework forms a Markov decision process (MDP), and solving the MDP problem exhaustively through conventional methods cannot be a plausible solution for ad hoc networks such as a CRN. In this paper, to solve the MDP problem, an actor–critic-algorithm-based solution for optimizing the action taken in a sensing–transmission framework is proposed. The proposed scheme solves an optimization problem on the basis of the actor–critic algorithm, and the action that brings the highest reward is selected. The optimal policy is determined by updating the optimization problem parameters. The reward is calculated by the critic component through interaction with the environment, and the value function for each state is updated, which then updates the policy function. Simulation results show that the proposed scheme closely follows the exhaustive search scheme and outperforms a myopic scheme in terms of average throughput achieved.


Author(s):  
F. Rosa

The widespread availability of network-enabled handheld devices (e.g., PDAs with WiFi) has made pervasive computing environment development an emerging reality. Mobile (or multi-hop) Ad-hoc NETworks (MANETs-Agrawal & Zeng, 2003) are mobile device networks communicating via wireless links without relying on an underlying infrastructure. Each device in a MANET acts as an endpoint and as a router forwarding messages to devices within radio range. MANETs are a sound alternative to infrastructure-based networks whenever the infrastructure is lacking or unusable, for example, military applications, disaster/relief, emergency situations, and communication between vehicles.


Author(s):  
Soumaya El Barrak ◽  
Abdelouahid Lyhyaoui ◽  
Amina El Gonnouni ◽  
Antonio Puliafito ◽  
Salvatore Serrano

Sign in / Sign up

Export Citation Format

Share Document