Design and Transformation of a Domain-Specific Language for Reconfigurable Conveyor Systems

Author(s):  
Kyoungho An ◽  
Adam Trewyn ◽  
Aniruddha Gokhale ◽  
Shivakumar Sastry

Much of the existing literature on domain-specific modeling languages (DSMLs) focuses on either the DSML design and their use in developing complex software systems (e.g., in enterprise and web applications), or their use in physical systems (e.g., process control). With increasing focus on research and development of cyber-physical systems (CPS) such as autonomous automotive systems and process control systems, which are systems that tightly integrate cyber and physical artifacts, it becomes important to understand the need for and the roles played by DSMLs for such systems. One use of DSMLs for CPS systems is in the analysis and verification of different properties of the system. Many questions arise in this context: How are the cyber and physical artifacts represented in DSMLs? How can these DSMLs be used in analysis? This book chapter addresses these questions through a case study of reconfigurable conveyor systems used as a representative example.

Author(s):  
Kyoungho An ◽  
Adam Trewyn ◽  
Aniruddha Gokhale ◽  
Shivakumar Sastry

Much of the existing literature on domain-specific modeling languages (DSMLs) focuses on either the DSML design and their use in developing complex software systems (e.g., in enterprise and web applications), or their use in physical systems (e.g., process control). With increasing focus on research and development of cyber-physical systems (CPS) such as autonomous automotive systems and process control systems, which are systems that tightly integrate cyber and physical artifacts, it becomes important to understand the need for and the roles played by DSMLs for such systems. One use of DSMLs for CPS systems is in the analysis and verification of different properties of the system. Many questions arise in this context: How are the cyber and physical artifacts represented in DSMLs? How can these DSMLs be used in analysis? This book chapter addresses these questions through a case study of reconfigurable conveyor systems used as a representative example.


2009 ◽  
Vol 03 (01) ◽  
pp. 31-56 ◽  
Author(s):  
KAI CHEN ◽  
JOSEPH PORTER ◽  
JANOS SZTIPANOVITS ◽  
SANDEEP NEEMA

Domain-Specific Modeling Languages (DSMLs) play a fundamental role in the model-based design of embedded software and systems. While abstract syntax metamodeling enables the rapid and inexpensive development of DSMLs, the specification of DSML semantics is still a hard problem. In previous work, we have developed methods and tools for the semantic anchoring of DSMLs. Semantic anchoring introduces a set of reusable "semantic units" that provide reference semantics for basic behavioral categories using the Abstract State Machine framework. In this paper, we extend the semantic anchoring framework to heterogeneous behaviors by exploring methods for the composition of semantic units. Semantic unit composition reduces the required effort from DSML designers and improves the quality of the specification. The proposed method is demonstrated through a case study. Formal notions of compositionality are discussed as well as a brief comparison with similar research tools.


Author(s):  
Srdjan Zivkovic ◽  
Krzystof Miksa ◽  
Harald Kühn

It has been acknowledged that model-based approaches and domain-specific modeling (DSM) languages, methods and tools are beneficial for the engineering of increasingly complex systems and software. Instead of general-purpose one-size-fits-all modeling languages, DSM methods facilitate model-based analysis and design of complex systems by providing modeling concepts tailored to the specific problem domain. Furthermore, hybrid DSM methods combine single DSM methods into integrated modeling methods, to allow for multi-perspective modeling. Metamodeling platforms provide flexible means for design and implementation of such hybrid modeling methods and appropriate domain-specific modeling tools. In this paper, we report on the conceptualization of a hybrid DSM method in the domain of network physical devices management, and its implementation based on the ADOxx metamodeling platform. The method introduces a hybrid modeling approach. A dedicated DSM language (DSML) is used to model the structure of physical devices and their configurations, whereas the formal language for knowledge representation OWL2 is used to specify configuration-related constraints. The outcome of the work is a hybrid, semantic technology-enabled DSM tool that allows for efficient and consistency-preserving model-based configuration of network equipment.


Author(s):  
Sebastian Rose ◽  
Marius Lauder ◽  
Michael Schlereth ◽  
Andy Schürr

Automation engineering heavily relies on concurrent model-driven design activities across multiple disciplines. The customization and integration of domain-specific modeling languages and tools play an important role. This contribution introduces a conceptual framework for this purpose that combines the modeling standards of the Object Management Group (OMG) with precisely defined specification techniques based on metamodeling and graph grammars. The main focus is on the development of synchronization mechanisms between modeling tools and on the presentation of some extensions of the underlying graph grammar formalism motivated by its application to a real-world scenario. These techniques are presented by a case study about the application of graph grammars within automation engineering.


Sign in / Sign up

Export Citation Format

Share Document