Compact Multimode Antenna Arrays for High Spectral Efficiency MIMO-OFDM WLANs

Author(s):  
Asuman Savaşcihabeş ◽  
Özgür Ertuğ ◽  
Erdem Yazgan

2013 ◽  
Vol 765-767 ◽  
pp. 2801-2804
Author(s):  
Ya Jing Wang ◽  
Ya Zhen Li ◽  
Li Qun Huang

The fourth generation mobile communication system is a high-speed broadband wireless communication system, it needs MIMO and OFDM technology which have high spectral efficiency and suitable for a multi-path fading channel. Because the MIMO-OFDM system is still an multi-carrier modulation system, the main drawback is the high PAPR value. This paper proposed an improved algorithm based on optimized PTS to reduce PAPR in STBC MIMO-OFDM system. The simulation results show that the improved algorithm can effectively reduce the PAPR value and do not increase the amount of computation in STBC MIMO-OFDM system.


Author(s):  
Mohamed Shehata ◽  
Ke Wang ◽  
Julian Webber ◽  
Masayuki Fujita ◽  
Tadao Nagatsuma ◽  
...  

Author(s):  
Roland Ryf ◽  
Nicolas K. Fontaine ◽  
Steffen Wittek ◽  
Karthik Choutagunta ◽  
Mikael Mazur ◽  
...  

Author(s):  
Ben Allen ◽  
Tim W. C. Brown ◽  
Timothy D. Drysdale

Linear angular momentum multiplexing (LAMM) has recently been proposed for high spectral-efficiency communications between moving platforms, such as between trains and ground infrastructure. We present performance results obtained from a scale experimental system comprising a 2 × 2 antenna system operating at 2.35 GHz. The link transmitted two independent video streams, using RF pre-coding and software-defined radios to modulate and up/down-convert the signals. Linear motion is introduced to demonstrate the translation-invariance of the technique. We interpret the measured data with the aid of an analytical model to show that crosstalk between the two channels is at levels low enough to consistently support the video streams without interruption. Specifically, our results show spectral efficiency is consistently higher when LAMM coding is enabled compared with an uncoded channel.


Sign in / Sign up

Export Citation Format

Share Document