blind detection
Recently Published Documents


TOTAL DOCUMENTS

401
(FIVE YEARS 75)

H-INDEX

22
(FIVE YEARS 5)

Author(s):  
Stefan Weithoffer ◽  
Rami Klaimi ◽  
Charbel Abdel Nour
Keyword(s):  

Entropy ◽  
2021 ◽  
Vol 23 (10) ◽  
pp. 1246
Author(s):  
Candy Olivia Mawalim ◽  
Masashi Unoki

Speech watermarking has become a promising solution for protecting the security of speech communication systems. We propose a speech watermarking method that uses the McAdams coefficient, which is commonly used for frequency harmonics adjustment. The embedding process was conducted, using bit-inverse shifting. We also developed a random forest classifier, using features related to frequency harmonics for blind detection. An objective evaluation was conducted to analyze the performance of our method in terms of the inaudibility and robustness requirements. The results indicate that our method satisfies the speech watermarking requirements with a 16 bps payload under normal conditions and numerous non-malicious signal processing operations, e.g., conversion to Ogg or MP4 format.


Author(s):  
Zehra Karapinar Senturk ◽  
Devrim Akgun

Image retargeting is a manipulation approach for resizing the images while aiming to keep the image distortion at a low level. Detecting image retargeting is of importance in image forensics or sometimes of importance in checking the originality. The aim of this paper is to introduce a new blind detection method for identifying retargeted images based on seam carving. For this purpose, a new method based on stripes at various numbers, Local Binary Pattern (LBP) transform, and energy map is introduced. The sub-images were obtained from square root of the energy map of LBP transform in the form of stripes for the feature extraction and these were evaluated in terms of several statistical features. The features extracted both from the natural and the seam carved images were used to train a Support Vector Machine (SVM) as a binary classifier. Experimental results were obtained using four-fold cross validation to improve the validity of the results during the evaluation process. According to the experiments, the proposed method produces improved accuracies when compared with the state-of-the-art solutions for the image retargeting detection based on seam carving.


2021 ◽  
Author(s):  
Weizhi Zhang ◽  
Boxiao Shen ◽  
Chuan Huang

2021 ◽  
Vol 3 (2) ◽  
pp. 138-149
Author(s):  
B Vivekanandam

One of the most crucial roles of the cognitive radio (CR) is detection of spectrum ‘holes’. The ‘no a-priori knowledge required’ prospective of blind detection techniques has attracted the attention of researchers and industries, using simple Eigen values. Over the years, a number of study and research has been carried out to determine the impact of thermal noise in the performance of the detector. However, there has not been much work on the impact of man-made noise, which also hinders the performance of the detector. As a result, both man-made impulse noise and thermal Gaussian noise are examined in this proposed study to determine the performance of blind Eigen value-based spectrum sensing. Many studies have been conducted over long sample length by oversampling or increasing the duration of sensing. As a result, a research progress has been made on shorter sample lengths by using a novel algorithm. The proposed system utilizes three algorithms; they are contra-harmonic-mean minimum Eigen value, contra-harmonic mean Maximum Eigen value and maximum Eigenvalue harmonic mean. For smaller sample lengths, there is a substantial rise in the number of cooperative secondary users, as well as a low signal-to-noise ratio when employing the maximum Eigen value Harmonic mean. The experimental analysis of the proposed work with respect to impulse noise and Gaussian signal using Nakagami-m fading channel is observed and the results identified are tabulated.


Sign in / Sign up

Export Citation Format

Share Document