Development of a Clinical Microvascular Imaging and Vascular Optics Facility

Author(s):  
John Allen

The Newcastle Microvascular Diagnostics Service (MDS) provides a comprehensive array of optical and thermal technologies for assessing micro-circulatory blood flow and function. Thermography is a key modality, although the facility has capability for capillaroscopy, laser Doppler perfusion / speckle contrast imaging, as well as numerous non-imaging techniques. The test portfolio covers four main areas: connective tissue disease and Raynaud's phenomenon, specialist limb studies (i.e. amputation level, muscle compartment perfusion and venous physiology), neurovascular assessment, and burn wound depth assessment. The MDS greatly benefits from a state-of-the-art temperature and humidity-controlled clinical room, enabling thermal physiology investigations to be performed efficiently and with confidence. Extensive research and development (R&D) is also undertaken, with collaborations across a range of academic, clinical and industrial partners. This chapter summarizes the history and development of the MDS, tests performed, R&D undertaken, clinical management, and future service directions.

2011 ◽  
Vol 300 (2) ◽  
pp. F319-F329 ◽  
Author(s):  
Niels-Henrik Holstein-Rathlou ◽  
Olga V. Sosnovtseva ◽  
Alexey N. Pavlov ◽  
William A. Cupples ◽  
Charlotte Mehlin Sorensen ◽  
...  

Tubuloglomerular feedback (TGF) has an important role in autoregulation of renal blood flow and glomerular filtration rate (GFR). Because of the characteristics of signal transmission in the feedback loop, the TGF undergoes self-sustained oscillations in single-nephron blood flow, GFR, and tubular pressure and flow. Nephrons interact by exchanging electrical signals conducted electrotonically through cells of the vascular wall, leading to synchronization of the TGF-mediated oscillations. Experimental studies of these interactions have been limited to observations on two or at most three nephrons simultaneously. The interacting nephron fields are likely to be more extensive. We have turned to laser speckle contrast imaging to measure the blood flow dynamics of 50–100 nephrons simultaneously on the renal surface of anesthetized rats. We report the application of this method and describe analytic techniques for extracting the desired data and for examining them for evidence of nephron synchronization. Synchronized TGF oscillations were detected in pairs or triplets of nephrons. The amplitude and the frequency of the oscillations changed with time, as did the patterns of synchronization. Synchronization may take place among nephrons not immediately adjacent on the surface of the kidney.


2018 ◽  
Vol 12 (1) ◽  
pp. e201800100 ◽  
Author(s):  
Wenzhi Lv ◽  
Yang Wang ◽  
Xiao Chen ◽  
Xiaoxi Fu ◽  
Jinling Lu ◽  
...  

2018 ◽  
Vol 45 (2) ◽  
pp. 0207006
Author(s):  
李晨曦 Li Chenxi ◽  
陈文亮 Chen Wenliang ◽  
蒋景英 Jiang Jingying ◽  
范颖 Fan Ying ◽  
杨婧孜 Yang Jingzi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document