Design and Simulation of Electro-Mechanical Mass Flow Sensor (EMMFS)

Author(s):  
Pravin P. Patil

The main objective of this chapter is FEA simulation of resonating tube with different size and material configuration for evaluation of resonant frequency. Resonating tube is an important component of Electro-Mechanical Mass Flow Sensor (EMMFS) used for measuring direct mass flow. Omega and U-shaped resonating tube type EMMFS have been investigated for 200mm, 300 mm and 400mm height with three different materials Copper, Aluminium and Mild Steel. EMMFS analysis is highly nonlinear study having fluid structure interaction. To simplify the solution large deformations in resonating tube countered to be absent. Sensing points are located symmetrically at limbs of resonating tube to sense the phase shift for measuring mass flow rate. FEA simulation of EMMFS has been done using Ansys. Solid Edge and Pro-E has been used for modeling of omega and U-shaped resonating tube.

The paper intent in modelling of S-shape coriolis mass flow sensor and then per-forming the simulation for determining the desired phase-shift. The coriolis mass flow sensor is a device that measures mass flow rate of a fluid inside the tube. It is also known as inertia flow meter. The phase shift appears due to the twist in the structure as a result of interactions between the vibration and fluid flow. The phase shift calculated at different sensor positions is helpful in calibrating the ac-curate mass flow rate and to ascertain the optimal sensor position. The coriolis mass flow sensor is modelled in CATIA V5 and simulation is performed in ANSYS 16.2. Tube material is copper and working fluid is water.


This paper contains in modelling of twin S-shape coriolis mass flow sensor in Titanium tube and then performing the simulation to determine the optimum phase-shift. To measure the mass flow rate coriolis mass flow sensor is placed inside the tube. The phase shift appears due to the twist in the structure as a result of interactions between the vibration and fluid flow. The phase shift calculated at different sensor positions is helpful in calibrating the accurate mass flow rate and to the optimal sensor position. The coriolis mass flow sensor is modelled in CATIA V5 and simulation is performed in ANSYS 16.2. tube material is titanium and working fluid is water.


Author(s):  
Lohrberg Carolin ◽  
Lenz Christian ◽  
Kreher Lisa ◽  
Bechtold Franz ◽  
Carstens Stefan ◽  
...  

2020 ◽  
pp. 1-1
Author(s):  
Thomas V.P. Schut ◽  
Remco J. Wiegerink ◽  
Joost C. Lotters

Author(s):  
Y. Zeng ◽  
J. Groenesteijn ◽  
D. Alveringh ◽  
R.J.A. Steenwelle ◽  
K. Ma ◽  
...  

Author(s):  
Jarno Groenesteijn ◽  
Harmen Droogendijk ◽  
Remco J. Wiegerink ◽  
Theo S. J. Lammerink ◽  
Joost C. Lotters ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document