Advanced Numerical Simulations in Mechanical Engineering - Advances in Mechatronics and Mechanical Engineering
Latest Publications


TOTAL DOCUMENTS

9
(FIVE YEARS 0)

H-INDEX

1
(FIVE YEARS 0)

Published By IGI Global

9781522537229, 9781522537236

Author(s):  
Ashwani Kumar

The main objective of this chapter is dynamic structural and thermal analysis of multi speed transmission gearbox (medium duty truck) using Finite Element Analysis (FEA). To evaluate the dynamic strength of transmission gearbox assembly transient structural analysis was performed. Dynamic varying loads at different rotational speed were applied to perform the transient analysis. In gear meshing operation at high rotational speed and loading condition, frictional heat is generated inside gearbox assembly. To reduce the effect of frictional heat, gear oil is used. In this research study gear oil SAE 85W140 was used for cooling and performance enhancement. Steady state thermal analysis was performed to evaluate the thermal effect of frictional heat, rotational speed of shafts (pinion, gear) and load with gear oil lubrication. In thermal effect gearbox surface temperature was measured at different points. FEA simulation results have been validated using experimental results available in literature.


Author(s):  
Shailendra Kumar

Piston is considered to be one of the most important part of internal combustion engine. Piston is used to deliver thrust via connecting rod to the main shaft of the engine. Normally it is made of cast iron which bears high gas pressure and has damping property. The main objective of this chapter is to perform structural and thermal analysis of MgZrO3 top surface ceramic coated piston. Piston made up of gray cast iron coated with ceramic material (MgZrO3) which is bonded by special material (NiCrAl) is designed by machine design approach to determine the dimensions of the piston and Finite Element Analysis (FEA) was performed using ANSYS 17.1. The pressure of the 5 N/mm2 was applied at top land of piston. An equivalent Von misses stress in ceramic coated piston was found less in comparison to uncoated piston. Thermal analysis of both coated and non-coated piston was performed.


Author(s):  
Ashwani Kharola

This chapter describes a mathematical model and design structure of five-link inverted pendulum on cart. The system comprises of five rigid pendulums or links mounted on a mutable cart. The objective is to control all the five links at vertical upright position when cart is stationary at particular location. The study considered free-body-diagram (FBD) analysis of proposed system and applied Newton's second law of motion for deriving a mathematical model of proposed system. The derived governing equations of motion can be further used by researchers for developing a Matlab-Simulink model of five-link inverted pendulum system. The developed model can be further used for deriving equations of motions for n-link cart and pendulum system. Researchers can further apply various control techniques for control of proposed system.


Author(s):  
Sachin Rana

The chapter states the problem of thermal contact conductance between surfaces. Rough surface generation and thermal contact conductance has been simulated using Finite Element Method (FEM) based Ansys. The resulting geometry is meshed by different meshing method to convert the solid model into FEM model. The main aim of meshing is to create fine and coarse mesh at the contact to reduce the computational time. To create a fine mesh at contact free meshing with refinement and mapped mesh has been used. The analysis has been performed on the FEM model with varying loading condition of different surface roughness and different materials to get the real contact area and thus thermal contact conductance. The variation of thermal contact conductance and real contact area with pressure of different surface roughness and with surface roughness of different loading condition of the specimen made of aluminum and mild steel has been plotted and compared.


Author(s):  
Monika Manglik ◽  
Mangey Ram ◽  
Divya Ahluwalia

Flexibility refers to the capability of a manufacturing system to respond cost effectively and arbitrarily to adapting production needs and necessities. This ability is becoming increasingly important for the design and operation of manufacturing systems, as these systems do function in highly variable and unpredictable environments. In this chapter, the reliability of the flexible manufacturing system has been calculated based on the mathematical framework. The model of the system consists of the system structure and the distribution of its components. The components are assumed to be repairable after various types of failures. In this work, the reliability and availability have been analyzed by using Markov process, Laplace transformations and supplementary variable techniques. Furthermore, the impacts of various failures on reliability, and availability of the system have also been analyzed.


Author(s):  
Yogesh K. Prajapati

This chapter covers single-phase heat transfer analysis in microchannel heat sink relevant to electronic cooling application. In order to estimate the correct heat transfer performance, it is required to consider both, conduction and convection. Hence, conjugate analysis of heat transfer has been considered where both conduction and convection heat transfer are calculated as a part of solution. Two different configurations of microchannels namely, uniform and diverging cross-section have been considered individually on different copper substrate. A copper substrate of dimension 25×0.9×4 mm has been used to generate microchannel. Inlet cross-section (0.4×0.75 mm) of both channels has been kept equal however; cross-section of diverging channel keeps on increasing as width is continuously increasing along the flow direction. A constant heat flux of 250 kW/m2 has been provided from the bottom. Comparative study has been done to analyse the heat transfer performance of both the configurations of microchannels.


Author(s):  
Subhash Singh ◽  
Kaushik Pal

In this chapter, the authors provide the simultaneous applications of numerical and mathematical methods for engineers. The best way to ignite the fire of curiosity in the student is the validation of their ideas and learning. Specially, the engineering students learn best when they are prompted by problems. This can be achieved through the validation of their analytical results with experimental. Therefore, the scope of the present work is to synchronize of the above-mentioned two domains (numerical, experimental). Furthermore, we have approached numerical methods from an experimental perspective. Mathematical methods are techniques by which mathematical problems are developed so that these can be solved with arithmetic operations. Although, there are many forms of numerical methods, they possess one common characteristic: they invariably call for large numbers of tedious arithmetic calculations. This work intends to relate the theoretical understanding with the real world problems.


Author(s):  
Pravin P. Patil

The main objective of this chapter is FEA simulation of resonating tube with different size and material configuration for evaluation of resonant frequency. Resonating tube is an important component of Electro-Mechanical Mass Flow Sensor (EMMFS) used for measuring direct mass flow. Omega and U-shaped resonating tube type EMMFS have been investigated for 200mm, 300 mm and 400mm height with three different materials Copper, Aluminium and Mild Steel. EMMFS analysis is highly nonlinear study having fluid structure interaction. To simplify the solution large deformations in resonating tube countered to be absent. Sensing points are located symmetrically at limbs of resonating tube to sense the phase shift for measuring mass flow rate. FEA simulation of EMMFS has been done using Ansys. Solid Edge and Pro-E has been used for modeling of omega and U-shaped resonating tube.


Author(s):  
Anshul Sharma

The active control of vibration of piezoelectric flexible smart structure is an important issue in engineering. Reducing vibration may improve the user's comfort and safety. This chapter presents a fuzzy logic approach for active control of vibration of a smart composite laminated spherical shell. The spherical shell is in the form of a layered composite shell having collocated piezoelectric sensor/actuator pair. The vibratory response of the shell is modeled using finite element method. There are five mechanical degrees of freedom per node and the potential difference across the piezoelectric layer is introduced as an additional electrical degree of freedom on an element level. The mode superposition method has been used to transform the coupled finite element equations of motion in the physical coordinates into a set of reduced uncoupled equations in the modal coordinates. The simulation results illustrate that the superiority of designed nonconventional fuzzy logic controller over conventional controllers.


Sign in / Sign up

Export Citation Format

Share Document