Electronic Noses in Food Analysis

Author(s):  
Runu Banerjee Roy ◽  
Rajib Bandyopadhyay ◽  
Bipan Tudu ◽  
Nabarun Bhattacharyya

Food quality evaluation is a tedious job as it can be sensed either by its flavor, taste, or appearance. Sensory evaluation for food quality determination is very complex and depends on biological sensor systems and is subject to high variability depending on taster's mood, physical state, etc. Moreover, as it is purely subjective, the observations may vary for different tasters. For food industries the instrumental means for quality monitoring has significant appreciations which are repeatable, accurate, and reliable. Electronic nose is an array of sensors that senses based on aroma of samples. For the last two decades, electronic nose has been applied in several domains of applications in food analysis, for example, food quality monitoring based on seasonal effect, ageing, geographical origin, fermentation, etc. This chapter aims to focus on different domains of application of electronic nose in food analysis.

2017 ◽  
Vol 89 (10) ◽  
pp. 1587-1601 ◽  
Author(s):  
Tatyana Anatolievna Kuchmenko

AbstractOne of the topical approaches in analysis – outside the framework of traditional ones – is the formation of an integral “image” of the object. There are several approaches to solving the issue of obtaining as much information about the sample by a certain portion of its properties or its composition as possible. The first approach is forming a visual image (diagram) of several different properties of the analyzed sample, for example, the content of certain metals, acids, volatile components and some other indicators of wine quality. The consolidated image of a sample enables us to distinguish samples identical or similar in the selected properties from crucially different ones, even in case of an acceptable change of each indicator. Or else, using the consolidated image one can evaluate the direction of an image shift of a certain sample compared to the set of standard samples. The analysis of the geometry of the sample image by diverse indicators affords ground for assumption of the reasons for this deviation, as well as identification of falsification, or even solution of a more complicated task: detecting the area of growth of raw materials. The second approach is close to the first one in terms of methodology, but it digitizes properties using detectors and presents this as an image (“visual print” of response) of signals of these detectors on some components of the sample (presence, content). The feature of this approach is the use of a detector system that is non-selective and cross-sensitive to certain sample components. These sample images are produced using a system of “electronic nose”. “Visual prints” of array signals of different character sensors contain qualitative and quantitative information about the part of the analyzed sample which is sorbed by sensors. Despite the uncertainty of this information, “electronic noses” of piezoelectric type are widely used in the analysis of samples with complex varying composition.


2001 ◽  
Vol 78 (9) ◽  
pp. 937-940 ◽  
Author(s):  
N. Shen ◽  
S. Moizuddin ◽  
L. Wilson ◽  
S. Duvick ◽  
P. White ◽  
...  

2012 ◽  
Vol 12 (3) ◽  
pp. 487-495 ◽  
Author(s):  
Wen-Ding Huang ◽  
Sanchali Deb ◽  
Young-Sik Seo ◽  
Smitha Rao ◽  
Mu Chiao ◽  
...  

2013 ◽  
Vol 69 (1) ◽  
pp. 135-141 ◽  
Author(s):  
Laura Capelli ◽  
Licinia Dentoni ◽  
Selena Sironi ◽  
Renato Del Rosso

This paper focuses on the opportunities for using electronic noses for odour exposure assessment purposes, especially in cases where dispersion modelling is not applicable. Such cases include, for instance, those sources where a detailed characterisation and quantification of the odour emissions for every hour of the simulation time domain is particularly difficult, due to the nature of the source or to the variability of the emissions over time. In such situations, it is useful to determine odour exposure directly at receptors instead. This paper critically discusses the state of the art of electronic nose technology as far as its application to the determination of odour exposure at receptors is concerned. One example of electronic nose application to the monitoring of odours from an Italian municipal solid waste (MSW) landfill is reported, in order to discuss the instrument's potential and limits. The monitoring results are represented by the number of measures that are classified in a specific olfactory class; this information allows the odour exposure at each monitoring site in terms of odour detection frequency to be determined. Besides a quantification of the odour episodes, electronic noses allowed the identification of the landfill gas as the monitored landfill major odour source.


Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2646 ◽  
Author(s):  
Henike Guilherme Jordan Voss ◽  
José Jair Alves Mendes Júnior ◽  
Murilo Eduardo Farinelli ◽  
Sergio Luiz Stevan

Due to the emergence of new microbreweries in the Brazilian market, there is a need to construct equipment to quickly and accurately identify the alcohol content in beverages, together with a reduced marketing cost. Towards this purpose, the electronic noses prove to be the most suitable equipment for this situation. In this work, a prototype was developed to detect the concentration of ethanol in a high spectrum of beers presents in the market. It was used cheap and easy-to-acquire 13 gas sensors made with a metal oxide semiconductor (MOS). Samples with 15 predetermined alcohol contents were used for the training and construction of the models. For validation, seven different commercial beverages were used. The correlation (R2) of 0.888 for the MLR (RMSE = 0.45) and the error of 5.47% for the ELM (RMSE = 0.33) demonstrate that the equipment can be an effective tool for detecting the levels of alcohol contained in beverages.


Sign in / Sign up

Export Citation Format

Share Document