Large Eddy Simulation Turbulence Model Applied to the Lattice Boltzmann Method

Author(s):  
Iñaki Zabala ◽  
Jesús M. Blanco

The lattice Boltzmann method (LBM) is a novel approach for simulating convection-diffusion problems. It can be easily parallelized and hence can be used to simulate fluid flow in multi-core computers using parallel computing. LES (large eddy simulation) is widely used in simulating turbulent flows because of its lower computational needs compared to others such as direct numerical simulation (DNS), where the Kolmogorov scales need to be solved. The aim of this chapter consists of introducing the reader to the treatment of turbulence in fluid dynamics through an LES approach applied to LBM. This allows increasing the robustness of LBM with lower computational costs without increasing the mesh density in a prohibitive way. It is applied to a standard D2Q9 structure using a unified formulation.

2018 ◽  
Vol 28 (5) ◽  
pp. 1096-1116 ◽  
Author(s):  
Emmanuel Leveque ◽  
Hatem Touil ◽  
Satish Malik ◽  
Denis Ricot ◽  
Alois Sengissen

Purpose The Lattice Boltzmann (LB) method offers an alternative to conventional computational fluid dynamics (CFD) methods. However, its practical use for complex turbulent flows of engineering interest is still at an early stage. This paper aims to outline an LB wall-modeled large-eddy simulation (WMLES) solver. Design/methodology/approach The solver is dedicated to complex high-Reynolds flows in the context of WMLES. It relies on an improved LB scheme and can handle complex geometries on multi-resolution block structured grids. Findings Dynamic and acoustic characteristics of a turbulent airflow past a rod-airfoil tandem are examined to test the capabilities of this solver. Detailed direct comparisons are made with both experimental and numerical reference data. Originality/value This study allows assessing the potential of an LB approach for industrial CFD applications.


Sign in / Sign up

Export Citation Format

Share Document