subgrid model
Recently Published Documents


TOTAL DOCUMENTS

120
(FIVE YEARS 20)

H-INDEX

22
(FIVE YEARS 2)

Author(s):  
Thomas Berlok ◽  
Eliot Quataert ◽  
Martin E Pessah ◽  
Christoph Pfrommer

Abstract In the outskirts of the intracluster medium (ICM) in galaxy clusters, the temperature decreases with radius. Due to the weakly collisional nature of the plasma, these regions are susceptible to the magneto-thermal instability (MTI), which can sustain turbulence and provide turbulent pressure support in the ICM. This instability arises due to heat conduction directed along the magnetic field, with a heat conductivity which is normally assumed to be given by the Spitzer value. Recent numerical studies of the ion mirror and the electron whistler instability using particle-in-cell codes have shown that microscale instabilities can lead to a reduced value for the heat conductivity in the ICM. This could in turn influence the efficiency with which the MTI drives turbulence. In this paper we investigate the influence of reduced heat transport on the nonlinear evolution of the MTI. We study plane-parallel, initially static atmospheres and employ a subgrid model that mimics the influence of the mirror instability on the heat conductivity. We use this subgrid model to assess the effect of microscales on the large scale dynamics of the ICM. We find that the nonlinear saturation of the MTI is surprisingly robust in our simulations. Over a factor of ∼103 in the thermal-to-magnetic pressure ratio and collisionality we find at most modest changes to the saturation of the MTI with respect to reference simulations where heat transport is unsuppressed.


Author(s):  
Yueqiang Shang ◽  
Qing Liu

Abstract We present a fractional-step finite element method based on a subgrid model for simulating the time-dependent incompressible Navier–Stokes equations. The method aims to the simulation of high Reynolds number flows and consists of two steps in which the nonlinearity and incompressibility are split into different steps. The first step of this method can be seen as a linearized Burger’s problem where a subgrid model based on an elliptic projection of the velocity into a lower-order finite element space is employed to stabilize the system, and the second step is a Stokes problem. Under mild regularity assumptions on the continuous solution, we obtain the stability of the numerical method, and derive error bound of the approximate velocity, which shows that first-order convergence rate in time and optimal convergence rate in space can be gotten by the method. Numerical experiments verify the theoretical predictions and demonstrate the promise of the proposed method, which show superiority of the proposed method to the compared method in the literature.


2020 ◽  
Vol 27 (11) ◽  
pp. 112710
Author(s):  
M. A. Belyaev ◽  
R. L. Berger ◽  
O. S. Jones ◽  
S. H. Langer ◽  
D. A. Mariscal ◽  
...  

2020 ◽  
Vol 642 ◽  
pp. A37 ◽  
Author(s):  
L. Bassini ◽  
E. Rasia ◽  
S. Borgani ◽  
G. L. Granato ◽  
C. Ragone-Figueroa ◽  
...  

Aims. We studied the star formation rate (SFR) in cosmological hydrodynamical simulations of galaxy (proto-)clusters in the redshift range 0 <  z <  4, comparing them to recent observational studies; we also investigated the effect of varying the parameters of the star formation model on galaxy properties such as SFR, star-formation efficiency, and gas fraction. Methods. We analyse a set of zoom-in cosmological hydrodynamical simulations centred on 12 clusters. The simulations are carried out with the GADGET-3 Tree-PM smoothed-particle hydro-dynamics code which includes various subgrid models to treat unresolved baryonic physics, including AGN feedback. Results. Simulations do not reproduce the high values of SFR observed within protocluster cores, where the values of SFR are underpredicted by a factor ≳4 both at z ∼ 2 and z ∼ 4. The difference arises as simulations are unable to reproduce the observed starburst population and is greater at z ∼ 2 because simulations underpredict the normalisation of the main sequence (MS) of star forming galaxies (i.e. the correlation between stellar mass and SFR) by a factor of ∼3. As the low normalisation of the MS seems to be driven by an underestimated gas fraction, it remains unclear whether numerical simulations miss starburst galaxies due to overly underpredicted gas fractions or overly low star formation efficiencies. Our results are stable against varying several parameters of the star formation subgrid model and do not depend on the details of AGN feedback. Conclusions. The subgrid model for star formation, introduced to reproduce the self-regulated evolution of quiescent galaxies, is not suitable to describe violent events like high-redshift starbursts. We find that this conclusion holds, independently of the parameter choice for the star formation and AGN models. The increasing number of multi-wavelength high-redshift observations will help to improve the current star formation model, which is needed to fully recover the observed star formation history of galaxy clusters.


2020 ◽  
Vol 500 (3) ◽  
pp. 3594-3612
Author(s):  
P F Rohde ◽  
S Walch ◽  
S D Clarke ◽  
D Seifried ◽  
A P Whitworth ◽  
...  

ABSTRACT The accretion of material on to young protostars is accompanied by the launching of outflows. Observations show that accretion, and therefore also outflows, are episodic. However, the effects of episodic outflow feedback on the core scale are not well understood. We have performed 88 smoothed particle hydrodynamic simulations of turbulent dense $1 \, {{\mathrm{M}}}_{\odot }$ cores to study the influence of episodic outflow feedback on the stellar multiplicity and the star formation efficiency (SFE). Protostars are represented by sink particles, which use a subgrid model to capture stellar evolution, inner-disc evolution, episodic accretion, and the launching of outflows. By comparing simulations with and without episodic outflow feedback, we show that simulations with outflow feedback reproduce the binary statistics of young stellar populations, including the relative proportions of singles, binaries, triples, etc. and the high incidence of twin binaries with q ≥ 0.95; simulations without outflow feedback do not. Entrainment factors (the ratio between total outflowing mass and initially ejected mass) are typically ∼7 ± 2, but can be much higher if the total mass of stars formed in a core is low and/or outflow episodes are infrequent. By decreasing both the mean mass of the stars formed and the number of stars formed, outflow feedback reduces the SFE by about a factor of 2 (as compared with simulations that do not include outflow feedback).


2020 ◽  
Vol 499 (1) ◽  
pp. 837-850
Author(s):  
Laura C Keating ◽  
Alexander J Richings ◽  
Norman Murray ◽  
Claude-André Faucher-Giguère ◽  
Philip F Hopkins ◽  
...  

ABSTRACT We present models of CO(1–0) emission from Milky-Way-mass galaxies at redshift zero in the FIRE-2 cosmological zoom-in simulations. We calculate the molecular abundances by post-processing the simulations with an equilibrium chemistry solver while accounting for the effects of local sources, and determine the emergent CO(1–0) emission using a line radiative transfer code. We find that the results depend strongly on the shielding length assumed, which, in our models, sets the attenuation of the incident UV radiation field. At the resolution of these simulations, commonly used choices for the shielding length, such as the Jeans length, result in CO abundances that are too high at a given H2 abundance. We find that a model with a distribution of shielding lengths, which has a median shielding length of ∼3 pc in cold gas (T &lt; 300 K) for both CO and H2, is able to reproduce both the observed CO(1–0) luminosity and inferred CO-to-H2 conversion factor at a given star formation rate compared with observations. We suggest that this short shielding length can be thought of as a subgrid model, which controls the amount of radiation that penetrates giant molecular clouds.


2020 ◽  
Vol 496 (2) ◽  
pp. 1182-1196 ◽  
Author(s):  
Antonio D Montero-Dorta ◽  
M Celeste Artale ◽  
L Raul Abramo ◽  
Beatriz Tucci ◽  
Nelson Padilla ◽  
...  

ABSTRACT We use the improved IllustrisTNG300 magnetohydrodynamical cosmological simulation to revisit the effect that secondary halo bias has on the clustering of the central galaxy population. With a side length of 205 h−1 Mpc and significant improvements on the subgrid model with respect to previous Illustris simulations, IllustrisTNG300 allows us to explore the dependencies of galaxy clustering over a large cosmological volume and halo mass range. We show at high statistical significance that the halo assembly bias signal (i.e. the secondary dependence of halo bias on halo formation redshift) manifests itself on the clustering of the galaxy population when this is split by stellar mass, colour, specific star formation rate, and surface density. A significant signal is also found for galaxy size: at fixed halo mass, larger galaxies are more tightly clustered than smaller galaxies. This effect, in contrast to the rest of the dependencies, seems to be uncorrelated with halo formation time, with some small correlation only detected for halo spin. We also explore the transmission of the spin bias signal, i.e. the secondary dependence of halo bias on halo spin. Although galaxy spin retains little information about the total halo spin, the correlation is enough to produce a significant galaxy spin bias signal. We discuss possible ways to probe this effect with observations.


Sign in / Sign up

Export Citation Format

Share Document