Probabilistic Power System Reliability Assessment

Author(s):  
Oliver Dzobo ◽  
Kehinde O. Awodele

This chapter presents the different dynamics in power system reliability as a result of the intrinsic behavior of distributed renewable energy sources. The output power of distributed renewable energy sources depends on the amount of available respective resource at any given time. This output power generally experiences fluctuations when compared with the output of conventional power generation units. The phenomenon is not usually included in traditional reliability worth evaluation methods for power system networks with distributed generation. In this chapter, a reliability worth evaluation model for power system networks with time-dependent distributed renewable generation resources is presented and analyzed. Time sequential Monte Carlo simulation technique is used, and the operational efficiency of the distributed generation unit is measured using the primary reliability worth index, ECOST. The derived index is fitted to a beta distribution function to show the inherent skewness of the supply reliability worth index.

Author(s):  
Oliver Dzobo ◽  
Kehinde O. Awodele

This chapter presents the different dynamics in power system reliability as a result of the intrinsic behavior of distributed renewable energy sources. The output power of distributed renewable energy sources depends on the amount of available respective resource at any given time. This output power generally experiences fluctuations when compared with the output of conventional power generation units. The phenomenon is not usually included in traditional reliability worth evaluation methods for power system networks with distributed generation. In this chapter, a reliability worth evaluation model for power system networks with time-dependent distributed renewable generation resources is presented and analyzed. Time sequential Monte Carlo simulation technique is used, and the operational efficiency of the distributed generation unit is measured using the primary reliability worth index, ECOST. The derived index is fitted to a beta distribution function to show the inherent skewness of the supply reliability worth index.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3412 ◽  
Author(s):  
Lei Liu ◽  
Hidehito Matayoshi ◽  
Mohammed Lotfy ◽  
Manoj Datta ◽  
Tomonobu Senjyu

Renewable energy sources (RESs), as clean, abundant, and inexhaustible source of energy, have developed quickly in recent years and played more and more important roles around the world. However, RESs also have some disadvantages, such as the weakness of stability, and by the the estimated increase of utilizing RESs in the near future, researchers began to give more attention to these issues. This paper presents a novel output power fluctuate compensation scheme in the small-scale power system, verifying the effect of output power control using storage battery, demand-response and RESs. Four scenarios are considered in the proposed approach: real-time pricing demand-response employment, RESs output control use and both of demand-response and RESs output control implementation. The performance of the proposed control technique is investigated using the real 10-bus power system model of Okinawa island, Japan. Moreover, the system stability is checked using the pole-zero maps for all of the control loops associated with the proposed scheme. The robustness and effectiveness of the proposed method was verified by simulation using Matlab ® /Simulink ® .


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2862
Author(s):  
Mika Korkeakoski

Renewable Energy Sources (RES) have become increasingly desirable worldwide in the fight against global climate change. The sharp decrease in costs of especially wind and solar photovoltaics (PV) have created opportunities to move from dependency on conventional fossil fuel-based electricity production towards renewable energy sources. Renewables experience around 7% (in 2018) annual growth rate in the electricity production globally and the pace is expected to further increase in the near future. Cuba is no exception in this regard, the government has set an ambitious renewable energy target of 24% RES of electricity production by the year 2030. The article analyses renewable energy trajectories in Isla de la Juventud, Cuba, through different future energy scenarios utilizing EnergyPLAN tool. The goal is to identify the best fit and least cost options in transitioning towards 100% electric power systemin Isla de la Juventud, Cuba. The work is divided into analysis of (1) technical possibilities for five scenarios in the electricity production with a 40% increase of electricity consumption by 2030: Business As Usual (BAU 2030, with the current electric power system (EPS) setup), VISION 2030 (according to the Cuban government plan with 24% RES), Advanced Renewables (ARES, with 50% RES), High Renewables (HiRES, with 70% RES), and Fully Renewables (FullRES, with 100% RES based electricity system) scenarios and (2) defining least cost options for the five scenarios in Isla de la Juventud, Cuba. The results show that high penetration of renewables is technically possible even up to 100% RES although the best technological fit versus least cost options may not favor the 100% RES based systems with the current electric power system (EPS) setup. This is due to realities in access to resources, especially importation of state of the art technological equipment and biofuels, financial and investment resources, as well as the high costs of storage systems. The analysis shows the Cuban government vision of reaching 24% of RES in the electricity production by 2030 can be exceeded even up to 70% RES based systems with similar or even lower costs in the near future in Isla de la Juventud. However, overcoming critical challenges in the economic, political, and legal conditions are crucially important; how will the implementation of huge national capital investments and significant involvement of Foreign Direct Investments (FDI) actualize to support achievement of the Cuban government’s 2030 vision?


Sign in / Sign up

Export Citation Format

Share Document