Cooperative Virtual Inertia and Reactive Power Control of PMSG Wind Generator and Battery for Improving Transient Stability of Power System Including Renewable Energy Sources

Author(s):  
Takamasa Sato ◽  
Faramarz Asharif ◽  
Rion Takahashi ◽  
Atsushi Umemura ◽  
Junji Tamura
2020 ◽  
Vol 10 (24) ◽  
pp. 8874
Author(s):  
Masaki Yagami ◽  
Masanori Ichinohe ◽  
Junji Tamura

This paper proposes a novel control method for enhancing transient stability by using renewable energy sources (RES). The kinetic energy accumulated in a rotor of variable speed wind generator (VSWG) is proactively used as the active power source, which is controlled according to the frequency measured at the wind farm. In addition, coordinated reactive power control according to the grid voltage is also carried out to more effectively use the kinetic energy of the VSWG. The effects of the proposed control system were evaluated by simulation analyses performed using a modified IEEE nine-bus power system network made up of synchronous generators (SGs), a photovoltaic (PV) system and a VSWG-based wind farm. Furthermore, the coordinated reactive power control between the VSWG and PV system was also demonstrated.


2018 ◽  
Vol 10 (11) ◽  
pp. 4140 ◽  
Author(s):  
Seungchan Oh ◽  
Heewon Shin ◽  
Hwanhee Cho ◽  
Byongjun Lee

Efforts to reduce greenhouse gas emissions constitute a worldwide trend. According to this trend, there are many plans in place for the replacement of conventional electric power plants operating using fossil fuels with renewable energy sources (RESs). Owing to current needs to expand the RES penetration in accordance to a new National power system plan, the importance of RESs is increasing. The RES penetration imposes various impacts on the power system, including transient stability. Furthermore, the fact that they are distributed at multiple locations in the power system is also a factor which makes the transient impact analysis of RESs difficult. In this study, the transient impacts attributed to the penetration of RESs are analyzed and compared with the conventional Korean electric power system. To confirm the impact of the penetration of RESs on transient stability, the effect was analyzed based on a single machine equivalent (SIME) configuration. Simulations were conducted in accordance to the Korean power system by considering the anticipated RES penetration in 2030. The impact of RES on transient stability was provided by a change in CCT by increasing of the RES penetration.


Sign in / Sign up

Export Citation Format

Share Document