Core Concepts in Peer-to-Peer Networking

2011 ◽  
pp. 1-27 ◽  
Author(s):  
Detlef Schoder ◽  
Kai Fischbach ◽  
Christian Schmitt

This chapter reviews core concepts of peer-to-peer (P2P) networking. It highlights the management of resources, such as bandwidth, storage, information, files, and processor cycles based on P2P networks. A model differentiating P2P infrastructures, P2P applications, and P2P communities is introduced. This model provides a better understanding of the different perspectives of P2P. Key technical and social challenges that still limit the potential of information systems based on P2P architectures are discussed.

2004 ◽  
Vol 13 (01) ◽  
pp. 63-89 ◽  
Author(s):  
NADIA BUSI ◽  
ALBERTO MONTRESOR ◽  
GIANLUIGI ZAVATTARO

Peer-to-peer (P2P) has recently emerged as a promising model for supporting scalable networks composed of autonomous and spontaneously cooperating entities. The key concept in P2P is decentralization: the resources, the services, as well as the control are not in charge of specialized nodes in the network, but each node (called peer in this context) is directly involved in the management of all these aspects. Besides the advantages of decentralization (autonomy, adaptability, collaboration, and dinamicity just to mention few of them) one of the main drawbacks is the impossibility to predict the topology of the network, thus leaving at run-time any decision about the management of the interaction among the peers. For this reason, we consider useful to provide the developers of P2P applications with a high-level coordination language to be exploited to program the coordination among the peers. In this paper, we present [Formula: see text], a new data-driven coordination model suitable for P2P networks, and we describe [Formula: see text], an implementation of the [Formula: see text] coordination model based on the JXTA peer-to-peer technology.


Author(s):  
S. H. Kwok ◽  
Y. M. Cheung ◽  
K. Y. Chan

A recent survey revealed that 18 millions American Internet users, or approximately 14% of total American Internet population have peer-to-peer (P2P) file-sharing applications running on their computers (Rainie & Madden, 2004). Not surprisingly, P2P applications have become common tools for information sharing and distribution since the appearance of Napster (Napster, 2003) in 1999. P2P systems are the distributed systems in which all nodes are equal in terms of functionality and able to directly communicate with each other without the coordination of a powerful server. Anonymity, scalability, fault resilience, decentralization and self-organization are the distinct characteristics of P2P computing (Milojicic et al., 2002) compared with the traditional client-server computing. P2P computing is believed to be capable of overcoming limitations of the computing environment placed by the client-server computing model. Milojicic et al. (2002), for example, suggested that P2P computing is capable of providing improved scalability by eliminating the limiting factor, the centralized server existing in the client-server computing. In the past few years, P2P computing and its promised characteristics have caught the attention of researchers who have studied the existing P2P networks, and the advantages and disadvantage of P2P systems. Important findings include the excessive network traffic caused by flooding-based searching mechanism that must be tackled in order to fully utilize the improved scalability of P2P systems (Matei, Iamnitchi, & Foster, 2002; Portmann & Seneviratne, 2002). There were proposed efficient searching techniques targeted for both structured and unstructured P2P systems. Other research projects were conducted to study, and were intended to complement, the drawbacks brought by distinct characteristics of P2P systems. For example, the P2P users’ free-riding behavior is generally attributed to the anonymity of such form of communication (Adar & Huberman, 2000). Recent research projects have shifted to a new line of investigation of P2P networks from the economic perspective and applications of P2P systems in workplaces (Kwok & Gao, 2004; Tiwana, 2003).


2018 ◽  
Vol 7 (2.7) ◽  
pp. 1051
Author(s):  
Gera Jaideep ◽  
Bhanu Prakash Battula

Peer to Peer (P2P) network in the real world is a class of systems that are made up of thousands of nodes in distributed environments. The nodes are decentralized in nature. P2P networks are widely used for sharing resources and information with ease. Gnutella is one of the well known examples for such network. Since these networks spread across the globe with large scale deployment of nodes, adversaries use them as a vehicle to launch DDoS attacks. P2P networks are exploited to make attacks over hosts that provide critical services to large number of clients across the globe. As the attacker does not make a direct attack it is hard to detect such attacks and considered to be high risk threat to Internet based applications. Many techniques came into existence to defeat such attacks. Still, it is an open problem to be addressed as the flooding-based DDoS is difficult to handle as huge number of nodes are compromised to make attack and source address spoofing is employed. In this paper, we proposed a framework to identify and secure P2P communications from a DDoS attacks in distributed environment. Time-to-Live value and distance between source and victim are considered in the proposed framework. A special agent is used to handle information about nodes, their capacity, and bandwidth for efficient trace back. A Simulation study has been made using NS2 and the experimental results reveal the significance of the proposed framework in defending P2P network and target hosts from high risk DDoS attacks.  


2021 ◽  
Author(s):  
Abdolkarim Hajfarajollah Dabbagh

"Due to the lack of a centralized server in “Peer-to-Peer” (P2P) networks, users are responsible for the security of these networks. One of the security issues in P2P networks is the security of the message routing. Messages could be altered or modified by attackers while being routed. The conventional security method to avoid this has been “Public Key Cryptography” (PKC). To avoid the certificate management issue in PKC, “Identity-based Encryption” (IBE) has been suggested in which any arbitrary string could be used as a public key. Since IBE is a computationally expensive method, current proposed IBE-based methods are not effective in the message routing phase in P2P networks and highly affect the performance of message delivery time in these networks. This thesis proposes two IBE-based protocols that can be applied effectively to the message routing phase of structured P2P networks, yet provide a satisfactory message delivery time performance. Both protocols benefit from Identity-based key exchange scheme and, therefore, none of them impose any extra communication on the network to secure message routing. Protocol 1 significantly improves the performance of message delivery time compared to the current IBE-based proposed methods. Protocol 2, which requires nodes to store data, has a performance similar to the situations in which no security measures are applied for message routing."


Sign in / Sign up

Export Citation Format

Share Document