Mosaic-Based Relevance Feedback for Image Retrieval

Author(s):  
Odej Kao ◽  
Ingo la Tendresse

A standard approach for content-based image retrieval (CBIR) is based on the extraction and comparison of features usually related to dominant colours, shapes, textures and layout (Del Bimbo, 1999). These features are a-priori defined and extracted, when the image is inserted into the database. At query time the user submits a similar sample image (query-by-sample-image) or draws a sketch (query-by-sketch) of the sought archived image. The similarity degree of the current query image and the target images is determined by calculation of a multidimensional distance between the corresponding features. The computed similarity values allow the creation of an image ranking, where the first k, usually k=32 or k=64, images are considered retrieval hits. These are chained in a list called ranking and then presented to the user. Each of these images can be used as a starting point for a refined search in order to improve the obtained results.

2017 ◽  
Vol 10 (1) ◽  
pp. 85-108 ◽  
Author(s):  
Khadidja Belattar ◽  
Sihem Mostefai ◽  
Amer Draa

The use of Computer-Aided Diagnosis in dermatology raises the necessity of integrating Content-Based Image Retrieval (CBIR) technologies. The latter could be helpful to untrained users as a decision support system for skin lesion diagnosis. However, classical CBIR systems perform poorly due to semantic gap. To alleviate this problem, we propose in this paper an intelligent Content-Based Dermoscopic Image Retrieval (CBDIR) system with Relevance Feedback (RF) for melanoma diagnosis that exhibits: efficient and accurate image retrieval as well as visual features extraction that is independent of any specific diagnostic method. After submitting a query image, the proposed system uses linear kernel-based active SVM, combined with histogram intersection-based similarity measure to retrieve the K most similar skin lesion images. The dominant (melanoma, benign) class in this set will be identified as the image query diagnosis. Extensive experiments conducted on our system using a 1097 image database show that the proposed scheme is more effective than CBDIR without the assistance of RF.


2017 ◽  
Vol 1 (4) ◽  
pp. 165
Author(s):  
M. Premkumar ◽  
R. Sowmya

Retrieving images from large databases becomes a difficult task. Content based image retrieval (CBIR) deals with retrieval of images based on their similarities in content (features) between the query image and the target image. But the similarities do not vary equally in all directions of feature space. Further the CBIR efforts have relatively ignored the two distinct characteristics of the CBIR systems: 1) The gap between high level concepts and low level features; 2) Subjectivity of human perception of visual content. Hence an interactive technique called the relevance feedback technique was used. These techniques used user’s feedback about the retrieved images to reformulate the query which retrieves more relevant images during next iterations. But those relevance feedback techniques are called hard relevance feedback techniques as they use only two level user annotation. It was very difficult for the user to give feedback for the retrieved images whether they are relevant to the query image or not. To better capture user’s intention soft relevance feedback technique is proposed. This technique uses multilevel user annotation. But it makes use of only single user feedback. Hence Soft association rule mining technique is also proposed to infer image relevance from the collective feedback. Feedbacks from multiple users are used to retrieve more relevant images improving the performance of the system. Here soft relevance feedback and association rule mining techniques are combined. During first iteration prior association rules about the given query image are retrieved to find out the relevant images and during next iteration the feedbacks are inserted into the database and relevance feedback techniques are activated to retrieve more relevant images. The number of association rules is kept minimum based on redundancy detection.


2020 ◽  
Vol 79 (37-38) ◽  
pp. 26995-27021
Author(s):  
Lorenzo Putzu ◽  
Luca Piras ◽  
Giorgio Giacinto

Abstract Given the great success of Convolutional Neural Network (CNN) for image representation and classification tasks, we argue that Content-Based Image Retrieval (CBIR) systems could also leverage on CNN capabilities, mainly when Relevance Feedback (RF) mechanisms are employed. On the one hand, to improve the performances of CBIRs, that are strictly related to the effectiveness of the descriptors used to represent an image, as they aim at providing the user with images similar to an initial query image. On the other hand, to reduce the semantic gap between the similarity perceived by the user and the similarity computed by the machine, by exploiting an RF mechanism where the user labels the returned images as being relevant or not concerning her interests. Consequently, in this work, we propose a CBIR system based on transfer learning from a CNN trained on a vast image database, thus exploiting the generic image representation that it has already learned. Then, the pre-trained CNN is also fine-tuned exploiting the RF supplied by the user to reduce the semantic gap. In particular, after the user’s feedback, we propose to tune and then re-train the CNN according to the labelled set of relevant and non-relevant images. Then, we suggest different strategies to exploit the updated CNN for returning a novel set of images that are expected to be relevant to the user’s needs. Experimental results on different data sets show the effectiveness of the proposed mechanisms in improving the representation power of the CNN with respect to the user concept of image similarity. Moreover, the pros and cons of the different approaches can be clearly pointed out, thus providing clear guidelines for the implementation in production environments.


The digital image data is quick expanding in capacity and heterogeneity. The customary information retrieval approaches are cannot fulfill the client's need, so there isneed to present a proficient framework for Content Based Image Retrieval(CBIR). The CBIR is an appealing wellspring of precise and quick retrieval. CBIR goes for discovering imagedatabases for explicit images that are like a given query image dependent on its features.In this paper the methodology of content based image retrieval are examined, investigated and thought about. Here, the different image substance, for example, colour, texture and shape features are mined by utilizing differentfeature extraction procedures, and furthermore extraordinary distance measures, Relevance Feedback (RF) and indexing methods are used to improve the execution of the CBIR system.The existing exploration strategies are talked about with their benefits and negative marks, so the further research works can be focused more.


2012 ◽  
Vol 6-7 ◽  
pp. 1150-1155
Author(s):  
Gui Zhi Li ◽  
Chang Sheng Zhou ◽  
Wei Wang ◽  
Ya Hui Liu

Conventional approaches to image retrieval are based on the assumption that relevant images are physically near the query image in some feature space. However, semantically related images are often scattered across several visual clusters. This leads to adapting multiple queries to represent a query in the feature space. Therefore, it is necessary to handle disjunctive queries in the feature space. In this paper, a new content-based image retrieval method with relevance feedback technique using RBF neural network learning is proposed. The method transfers the process of relevance feedback into a learning problem of RBF neural network. RBFNN can describe the distribution of positive feedback sample images in feature space with a set of neighboring clusters produced through constructing neural network, for accurately reflecting their semantic relevance. The performance of the method using RBFNN is evaluated on a database of 10,000 images. Experimental results demonstrate the effectiveness of the proposed method.


Author(s):  
K. VAISHNAVI ◽  
G.P.RAMESH KUMAR

Relevance Feedback is an important tool for grasping user's need in Interactive Content Based Image Retrieval (CBIR). Keeping this in mind, we have build up a framework using Relevance Vector Machine Classifier in interactive framework where user labels images as appropriate and inappropriate. The refinement of the images shown to the user is done using a few rounds of relevance feedback. This appropriate and inappropriate set then provides the training set for the RVM for each of these rounds. The method uses Histogram Intersection kernel with this interactive RVM (IKRVM). It has a retrieval component on top of this which searches for those images for retrieving which falls in the nearest neighbor set of the query image on the basis of histogram intersection based identical ranking (HIIR). The experimental results shows that the proposed framework shows better precision when compared with Active learning based RVMActive implemented with Radial Basis or Polynomial Kernels.


Author(s):  
Gangavarapu Venkata Satya Kumar ◽  
Pillutla Gopala Krishna Mohan

In diverse computer applications, the analysis of image content plays a key role. This image content might be either textual (like text appearing in the images) or visual (like shape, color, texture). These two image contents consist of image’s basic features and therefore turn out to be as the major advantage for any of the implementation. Many of the art models are based on the visual search or annotated text for Content-Based Image Retrieval (CBIR) models. There is more demand toward multitasking, a new method needs to be introduced with the combination of both textual and visual features. This paper plans to develop the intelligent CBIR system for the collection of different benchmark texture datasets. Here, a new descriptor named Information Oriented Angle-based Local Tri-directional Weber Patterns (IOA-LTriWPs) is adopted. The pattern is operated not only based on tri-direction and eight neighborhood pixels but also based on four angles [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text]. Once the patterns concerning tri-direction, eight neighborhood pixels, and four angles are taken, the best patterns are selected based on maximum mutual information. Moreover, the histogram computation of the patterns provides the final feature vector, from which the new weighted feature extraction is performed. As a new contribution, the novel weight function is optimized by the Improved MVO on random basis (IMVO-RB), in such a way that the precision and recall of the retrieved image is high. Further, the proposed model has used the logarithmic similarity called Mean Square Logarithmic Error (MSLE) between the features of the query image and trained images for retrieving the concerned images. The analyses on diverse texture image datasets have validated the accuracy and efficiency of the developed pattern over existing.


Sign in / Sign up

Export Citation Format

Share Document