A Virtual Laboratory for Digital Signal Processing

Author(s):  
Chyi-Ren Dow ◽  
Yi-Hsung Li ◽  
Jin-Yu Bai

This work designs and implements a virtual digital signal processing laboratory (VDSPL). VDSPL consists of four parts: mobile agent execution environments, mobile agents, DSP development software, and DSP experimental platforms. The network capability of VDSPL is created by using mobile agent and wrapper techniques without modifying the source code of the original programs. VDSPL provides human-human and human-computer interaction for students and teachers, and it also can lighten the teacher’s load, increase the learning result of students, and improve the usage of network bandwidth. A prototype of VDSPL has been implemented by using the IBM Aglet system and Java Native Interface for DSP experimental platforms. Also, experimental results demonstrate that our system has received many positive feedbacks from both students and teachers.

2008 ◽  
pp. 474-487
Author(s):  
Chyi-Ren Dow ◽  
Yi-Hsung Li ◽  
Jin-Yu Bai

This work designs and implements a virtual digital signal processing laboratory, VDSPL. VDSPL consists of four parts: mobile agent execution environments, mobile agents, DSP development software, and DSP experimental platforms. The network capability of VDSPL is created by using mobile agent and wrapper techniques without modifying the source code of the original programs. VDSPL provides human-human and human-computer interaction for students and teachers, and it can also lighten the loading of teachers, increase the learning result of students, and improve the usage of network bandwidth. A prototype of VDSPL has been implemented by using the IBM Aglet system and Java Native Interface for DSP experimental platforms. Also, experimental results demonstrate that our system has received many positive feedbacks from both students and teachers.


Author(s):  
Chyi-Ren Dow ◽  
Yi-Hsung Li ◽  
Jin-Yu Bai

This work designs and implements a virtual digital signal processing laboratory, VDSPL. VDSPL consists of four parts: mobile agent execution environments, mobile agents, DSP development software, and DSP experimental platforms. The network capability of VDSPL is created by using mobile agent and wrapper techniques without modifying the source code of the original programs. VDSPL provides human-human and human-computer interaction for students and teachers, and it can also lighten the loading of teachers, increase the learning result of students, and improve the usage of network bandwidth. A prototype of VDSPL has been implemented by using the IBM Aglet system and Java Native Interface for DSP experimental platforms. Also, experimental results demonstrate that our system has received many positive feedbacks from both students and teachers.


2019 ◽  
pp. 34-39 ◽  
Author(s):  
E.I. Chernov ◽  
N.E. Sobolev ◽  
A.A. Bondarchuk ◽  
L.E. Aristarhova

The concept of hidden correlation of noise signals is introduced. The existence of a hidden correlation between narrowband noise signals isolated simultaneously from broadband band-limited noise is theoretically proved. A method for estimating the latent correlation of narrowband noise signals has been developed and experimentally investigated. As a result of the experiment, where a time frag ent of band-limited noise, the basis of which is shot noise, is used as the studied signal, it is established: when applying the Pearson criterion, there is practically no correlation between the signal at the Central frequency and the sum of signals at mirror frequencies; when applying the proposed method for the analysis of the same signals, a strong hidden correlation is found. The proposed method is useful for researchers, engineers and metrologists engaged in digital signal processing, as well as developers of measuring instruments using a new technology for isolating a useful signal from noise – the method of mirror noise images.


Sign in / Sign up

Export Citation Format

Share Document