Higher Order Neural Networks with Bayesian Confidence Measure for the Prediction of the EUR/USD Exchange Rate

Author(s):  
Adam Knowles ◽  
Abir Hussain ◽  
Wael El Deredy ◽  
Paulo G.J. Lisboa ◽  
Christian L. Dunis

Multi-Layer Perceptrons (MLP) are the most common type of neural network in use, and their ability to perform complex nonlinear mappings and tolerance to noise in data is well documented. However, MLPs also suffer long training times and often reach only local optima. Another type of network is Higher Order Neural Networks (HONN). These can be considered a ‘stripped-down’ version of MLPs, where joint activation terms are used, relieving the network of the task of learning the relationships between the inputs. The predictive performance of the network is tested with the EUR/USD exchange rate and evaluated using standard financial criteria including the annualized return on investment, showing a 8% increase in the return compared with the MLP. The output of the networks that give the highest annualized return in each category was subjected to a Bayesian based confidence measure. This performance improvement may be explained by the explicit and parsimonious representation of high order terms in Higher Order Neural Networks, which combines robustness against noise typical of distributed models, together with the ability to accurately model higher order interactions for long-term forecasting. The effectiveness of the confidence measure is explained by examining the distribution of each network’s output. We speculate that the distribution can be taken into account during training, thus enabling us to produce neural networks with the properties to take advantage of the confidence measure.

Author(s):  
Fathi Ahmed Ali Adam, Mahmoud Mohamed Abdel Aziz Gamal El-Di

The study examined the use of artificial neural network models to predict the exchange rate in Sudan through annual exchange rate data between the US dollar and the Sudanese pound. This study aimed to formulate the models of artificial neural networks in which the exchange rate can be predicted in the coming period. The importance of the study is that it is necessary to use modern models to predict instead of other classical models. The study hypothesized that the models of artificial neural networks have a high ability to predict the exchange rate. Use models of artificial neural networks. The most important results ability of artificial neural networks models to predict the exchange rate accurately, Form MLP (1-1-1) is the best model chosen for that purpose. The study recommended the development of the proposed model for long-term forecasting.


Author(s):  
Hiromi Miyajima ◽  
Noritaka Shigei ◽  
Shuji Yatsuki

This chapter presents macroscopic properties of higher order neural networks. Randomly connected Neural Networks (RNNs) are known as a convenient model to investigate the macroscopic properties of neural networks. They are investigated by using the statistical method of neuro-dynamics. By applying the approach to higher order neural networks, macroscopic properties of them are made clear. The approach establishes: (a) there are differences between stability of RNNs and Randomly connected Higher Order Neural Networks (RHONNs) in the cases of the digital state -model and the analog state model; (b) there is no difference between stability of RNNs and RHONNs in the cases of the digital state -model and the analog state -model; (c) with neural networks with oscillation, there are large differences between RNNs and RHONNs in the cases of the digital state -model and the analog state -model, that is, there exists complex dynamics in each model for ; (d) behavior of groups composed of RHONNs are represented as a combination of the behavior of each RHONN.


Sign in / Sign up

Export Citation Format

Share Document