Bacterial ß-Barrel Outer Membrane Proteins

Author(s):  
Pantelis G. Bagos ◽  
Stavros J. Hamodrakas

ß-barrel outer membrane proteins constitute the second and less well-studied class of transmembrane proteins. They are present exclusively in the outer membrane of Gram-negative bacteria and presumably in the outer membrane of mitochondria and chloroplasts. During the last few years, remarkable advances have been made towards an understanding of their functional and structural features. It is now wellknown that ß-barrels are performing a large variety of biologically important functions for the bacterial cell. Such functions include acting as specific or non-specific channels, receptors for various compounds, enzymes, translocation channels, structural proteins, and adhesion proteins. All these functional roles are of great importance for the survival of the bacterial cell under various environmental conditions or for the pathogenic properties expressed by these organisms. This chapter reviews the currently available literature regarding the structure and function of bacterial outer membrane proteins. We emphasize the functional diversity expressed by a common structural motif such as the ß-barrel, and we provide evidence from the current literature for dozens of newly discovered families of transmembrane ß-barrels.

2014 ◽  
Vol 70 (a1) ◽  
pp. C578-C578
Author(s):  
Nicholas Noinaj ◽  
Adam Kuszak ◽  
Curtis Balusek ◽  
JC Gumbart ◽  
Petra Lukacik ◽  
...  

Beta-barrel membrane proteins are essential for nutrient import, signaling, motility, and survival. In Gram-negative bacteria, the beta-barrel assembly machinery (BAM) complex is responsible for the biogenesis of beta-barrel outer membrane proteins (OMPs), with homologous complexes found in mitochondria and chloroplasts. Despite their essential roles, exactly how these OMPs are formed remains unknown. The BAM complex consists of a central and essential component called BamA (an OMP itself) and four lipoproteins called BamB-E. While the structure of the lipoproteins have been reported, the structure of full length BamA has been elusive. Recently though, we described the structure of BamA from two species of bacteria: Neisseria gonorrhoeae and Haemophilus ducreyi. BamA consists of a large periplasmic domain attached to a 16-strand transmembrane beta-barrel domain. Together, our crystal structures and molecule dynamics (MD) simulations revealed several structural features which gave clues to the mechanism by which BamA catalyzes beta-barrel assembly. The first is that the interior cavity is accessible in one BamA structure and conformationally closed in the other. Second, an exterior rim of the beta-barrel has a distinctly narrowed hydrophobic surface, locally destabilizing the outer membrane. Third, the beta-barrel can undergo lateral opening, suggesting a route from the interior cavity in BamA into the outer membrane. And fourth, a surface exposed exit pore positioned above the lateral opening site which may play a role in the biogenesis of extracellular loops. In this presentation, the crystal structures and MD simulations of BamA will be presented along with our work looking at the role of these four structural features in the role of BamA within the BAM complex.


2016 ◽  
Vol 110 (3) ◽  
pp. 394a
Author(s):  
Ashlee M. Plummer ◽  
Janine H. Peterson ◽  
Harris D. Bernstein ◽  
Karen G. Fleming

1992 ◽  
Vol 61 (2) ◽  
pp. 81-85 ◽  
Author(s):  
Jan Tommassen ◽  
Marlies Struyvé ◽  
Hans de Cock

2016 ◽  
Vol 1858 (7) ◽  
pp. 1753-1759 ◽  
Author(s):  
Anna Pavlova ◽  
Hyea Hwang ◽  
Karl Lundquist ◽  
Curtis Balusek ◽  
James C. Gumbart

1999 ◽  
Vol 181 (12) ◽  
pp. 3688-3694 ◽  
Author(s):  
Ralf Koebnik

ABSTRACT The N-terminal domain of the OmpA protein from Escherichia coli, consisting of 170 amino acid residues, is embedded in the outer membrane, in the form of an antiparallel β-barrel whose eight transmembrane β-strands are connected by three short periplasmic turns and four relatively large surface-exposed hydrophilic loops. This protein domain serves as a paradigm for the study of membrane assembly of integral β-structured membrane proteins. In order to dissect the structural and functional roles of the surface-exposed loops, they were shortened separately and in all possible combinations. All 16 loop deletion mutants assembled into the outer membrane with high efficiency and adopted the wild-type membrane topology. This systematic approach proves the absence of topogenic signals (e.g., in the form of loop sizes or charge distributions) in these loops. The shortening of surface-exposed loops did not reduce the thermal stability of the protein. However, none of the mutant proteins, with the exception of the variant with the fourth loop shortened, served as a receptor for the OmpA-specific bacteriophage K3. Furthermore, all loops were necessary for the OmpA protein to function in the stabilization of mating aggregates during F conjugation. An OmpA deletion variant with all four loops shortened, consisting of only 135 amino acid residues, constitutes the smallest β-structured integral membrane protein known to date. These results represent a further step toward the development of artificial outer membrane proteins.


Sign in / Sign up

Export Citation Format

Share Document