Granular Computing Based Data Mining in the Views of Rough Set and Fuzzy Set

Author(s):  
Guoyin Wang ◽  
Jun Hu ◽  
Qinghua Zhang ◽  
Xianquan Liu ◽  
Jiaqing Zhou

Granular computing (GrC) is a label of theories, methodologies, techniques, and tools that make use of granules in the process of problem solving. The philosophy of granular computing has appeared in many fields, and it is likely playing a more and more important role in data mining. Rough set theory and fuzzy set theory, as two very important paradigms of granular computing, are often used to process vague information in data mining. In this chapter, based on the opinion of data is also a format for knowledge representation, a new understanding for data mining, domain-oriented data-driven data mining (3DM), is introduced at first. Its key idea is that data mining is a process of knowledge transformation. Then, the relationship of 3DM and GrC, especially from the view of rough set and fuzzy set, is discussed. Finally, some examples are used to illustrate how to solve real problems in data mining using granular computing. Combining rough set theory and fuzzy set theory, a flexible way for processing incomplete information systems is introduced firstly. Then, the uncertainty measure of covering based rough set is studied by converting a covering into a partition using an equivalence domain relation. Thirdly, a high efficient attribute reduction algorithm is developed by translating set operation of granules into logical operation of bit strings with bitmap technology. Finally, two rule generation algorithms are introduced, and experiment results show that the rule sets generated by these two algorithms are simpler than other similar algorithms.

Author(s):  
Qing-Hua Zhang ◽  
Long-Yang Yao ◽  
Guan-Sheng Zhang ◽  
Yu-Ke Xin

In this paper, a new incremental knowledge acquisition method is proposed based on rough set theory, decision tree and granular computing. In order to effectively process dynamic data, describing the data by rough set theory, computing equivalence classes and calculating positive region with hash algorithm are analyzed respectively at first. Then, attribute reduction, value reduction and the extraction of rule set by hash algorithm are completed efficiently. Finally, for each new additional data, the incremental knowledge acquisition method is proposed and used to update the original rules. Both algorithm analysis and experiments show that for processing the dynamic information systems, compared with the traditional algorithms and the incremental knowledge acquisition algorithms based on granular computing, the time complexity of the proposed algorithm is lower due to the efficiency of hash algorithm and also this algorithm is more effective when it is used to deal with the huge data sets.


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 432 ◽  
Author(s):  
Vilém Novák

In this paper, we will visit Rough Set Theory and the Alternative Set Theory (AST) and elaborate a few selected concepts of them using the means of higher-order fuzzy logic (this is usually called Fuzzy Type Theory). We will show that the basic notions of rough set theory have already been included in AST. Using fuzzy type theory, we generalize basic concepts of rough set theory and the topological concepts of AST to become the concepts of the fuzzy set theory. We will give mostly syntactic proofs of the main properties and relations among all the considered concepts, thus showing that they are universally valid.


2012 ◽  
Vol 241-244 ◽  
pp. 3000-3004
Author(s):  
Dai Wu Zhu ◽  
Yin Ni

At present, our analysis of the aviation accident mainly limited to the methods of mathematical statistics, the analysis method means of a single, and in a passive state, so the accident prediction is poor. This paper, basis on the rough set theory in data mining and preferential information ,we improve the rough set attribute reduction algorithm, and applied to civil aviation accident analysis to indentify the potential law of accident.


2018 ◽  
Vol 14 (01) ◽  
pp. 1-9 ◽  
Author(s):  
Santanu Acharjee

This paper focuses on two very important questions: “what is the future of a hybrid mathematical structure of soft set in science and social science?” and “why should we take care to use hybrid structures of soft set?”. At present, these are the most fundamental questions; which encircle a few prominent areas of mathematics of uncertainties viz. fuzzy set theory, rough set theory, vague set theory, hesitant fuzzy set theory, IVFS theory, IT2FS theory, etc. In this paper, we review connections of soft set theory and hybrid structures in a non-technical manner; so that it may be helpful for a non-mathematician to think carefully to apply hybrid structures in his research areas. Moreover, we must express that we do not have any intention to nullify contributions of fuzzy set theory or rough set theory, etc. to mankind; but our main intention is to show that we must be careful to develop any new hybrid structure with soft set. Here, we have a short discussion on needs of artificial psychology and artificial philosophy to enrich artificial intelligence.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Minlun Yan

Attribute reduction is one of the most important problems in rough set theory. However, from the granular computing point of view, the classical rough set theory is based on a single granulation. It is necessary to study the issue of attribute reduction based on multigranulations rough set. To acquire brief decision rules from information systems, this paper firstly investigates attribute reductions by combining the multigranulations rough set together with evidence theory. Concepts of belief and plausibility consistent set are proposed, and some important properties are addressed by the view of the optimistic and pessimistic multigranulations rough set. What is more, the multigranulations method of the belief and plausibility reductions is constructed in the paper. It is proved that a set is an optimistic (pessimistic) belief reduction if and only if it is an optimistic (pessimistic) lower approximation reduction, and a set is an optimistic (pessimistic) plausibility reduction if and only if it is an optimistic (pessimistic) upper approximation reduction.


Author(s):  
Yasuo Kudo ◽  
◽  
Tetsuya Murai ◽  

In this paper, we propose a parallel computation framework for a heuristic attribute reduction method. Attribute reduction is a key technique to use rough set theory as a tool in data mining. The authors have previously proposed a heuristic attribute reduction method to compute as many relative reducts as possible from a given dataset with numerous attributes. We parallelize our method by using open multiprocessing. We also evaluate the performance of a parallelized attribute reduction method by experiments.


Sign in / Sign up

Export Citation Format

Share Document