The Incremental Knowledge Acquisition Based on Hash Algorithm

Author(s):  
Qing-Hua Zhang ◽  
Long-Yang Yao ◽  
Guan-Sheng Zhang ◽  
Yu-Ke Xin

In this paper, a new incremental knowledge acquisition method is proposed based on rough set theory, decision tree and granular computing. In order to effectively process dynamic data, describing the data by rough set theory, computing equivalence classes and calculating positive region with hash algorithm are analyzed respectively at first. Then, attribute reduction, value reduction and the extraction of rule set by hash algorithm are completed efficiently. Finally, for each new additional data, the incremental knowledge acquisition method is proposed and used to update the original rules. Both algorithm analysis and experiments show that for processing the dynamic information systems, compared with the traditional algorithms and the incremental knowledge acquisition algorithms based on granular computing, the time complexity of the proposed algorithm is lower due to the efficiency of hash algorithm and also this algorithm is more effective when it is used to deal with the huge data sets.


2012 ◽  
Vol 524-527 ◽  
pp. 819-823
Author(s):  
Xin Ping Su ◽  
Guang Kun Nie ◽  
Wei Xin Fan

An approach of forklift’s fault diagnostic knowledge acquisition and discrete date based on rough set theory was put forward, according to the rough set theory in fault diagnosis of fault tolerance, the use of rough set theory in fault knowledge attribute reduction and value reduction, as in incomplete fault information of forklift hydraulic system fault diagnosis provides a train of thought. The inferential strategy and process of fault diagnosis of hydraulic system for forklift were described. Examples show that the proposed approach is very effective.



2013 ◽  
Vol 710 ◽  
pp. 617-622
Author(s):  
Jing Zhao

A Rough-Fuzzy RBF Neural Network was raised based on PSO Algorithm. In this model,gives a knowledge acquisition method that based on rough set theory,the Rough-Fuzzy RBF neural network are constructed according to the results of the knowledge acquisition,the PSO are used to optimize the network parameters.This paper take number plate for example to conduct a simulation experiment.The results shows that the model can simplify the network training sample,optimize the network structure and enhance the systems study efficiency and the precision.



2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Minlun Yan

Attribute reduction is one of the most important problems in rough set theory. However, from the granular computing point of view, the classical rough set theory is based on a single granulation. It is necessary to study the issue of attribute reduction based on multigranulations rough set. To acquire brief decision rules from information systems, this paper firstly investigates attribute reductions by combining the multigranulations rough set together with evidence theory. Concepts of belief and plausibility consistent set are proposed, and some important properties are addressed by the view of the optimistic and pessimistic multigranulations rough set. What is more, the multigranulations method of the belief and plausibility reductions is constructed in the paper. It is proved that a set is an optimistic (pessimistic) belief reduction if and only if it is an optimistic (pessimistic) lower approximation reduction, and a set is an optimistic (pessimistic) plausibility reduction if and only if it is an optimistic (pessimistic) upper approximation reduction.



Author(s):  
Guoyin Wang ◽  
Jun Hu ◽  
Qinghua Zhang ◽  
Xianquan Liu ◽  
Jiaqing Zhou

Granular computing (GrC) is a label of theories, methodologies, techniques, and tools that make use of granules in the process of problem solving. The philosophy of granular computing has appeared in many fields, and it is likely playing a more and more important role in data mining. Rough set theory and fuzzy set theory, as two very important paradigms of granular computing, are often used to process vague information in data mining. In this chapter, based on the opinion of data is also a format for knowledge representation, a new understanding for data mining, domain-oriented data-driven data mining (3DM), is introduced at first. Its key idea is that data mining is a process of knowledge transformation. Then, the relationship of 3DM and GrC, especially from the view of rough set and fuzzy set, is discussed. Finally, some examples are used to illustrate how to solve real problems in data mining using granular computing. Combining rough set theory and fuzzy set theory, a flexible way for processing incomplete information systems is introduced firstly. Then, the uncertainty measure of covering based rough set is studied by converting a covering into a partition using an equivalence domain relation. Thirdly, a high efficient attribute reduction algorithm is developed by translating set operation of granules into logical operation of bit strings with bitmap technology. Finally, two rule generation algorithms are introduced, and experiment results show that the rule sets generated by these two algorithms are simpler than other similar algorithms.



Entropy ◽  
2019 ◽  
Vol 21 (2) ◽  
pp. 155 ◽  
Author(s):  
Lin Sun ◽  
Xiaoyu Zhang ◽  
Jiucheng Xu ◽  
Shiguang Zhang

Attribute reduction as an important preprocessing step for data mining, and has become a hot research topic in rough set theory. Neighborhood rough set theory can overcome the shortcoming that classical rough set theory may lose some useful information in the process of discretization for continuous-valued data sets. In this paper, to improve the classification performance of complex data, a novel attribute reduction method using neighborhood entropy measures, combining algebra view with information view, in neighborhood rough sets is proposed, which has the ability of dealing with continuous data whilst maintaining the classification information of original attributes. First, to efficiently analyze the uncertainty of knowledge in neighborhood rough sets, by combining neighborhood approximate precision with neighborhood entropy, a new average neighborhood entropy, based on the strong complementarity between the algebra definition of attribute significance and the definition of information view, is presented. Then, a concept of decision neighborhood entropy is investigated for handling the uncertainty and noisiness of neighborhood decision systems, which integrates the credibility degree with the coverage degree of neighborhood decision systems to fully reflect the decision ability of attributes. Moreover, some of their properties are derived and the relationships among these measures are established, which helps to understand the essence of knowledge content and the uncertainty of neighborhood decision systems. Finally, a heuristic attribute reduction algorithm is proposed to improve the classification performance of complex data sets. The experimental results under an instance and several public data sets demonstrate that the proposed method is very effective for selecting the most relevant attributes with great classification performance.



Author(s):  
Jingjing Song ◽  
Huili Dou ◽  
Xiansheng Rao ◽  
Xiaojing Luo ◽  
Xuan Yan

As a feature selection technique in rough set theory, attribute reduction has been extensively explored from various viewpoints especially the aspect of granularity, and multi-granularity attribute reduction has attracted much attention. Nevertheless, it should be pointed out that multiple granularities require to be considered simultaneously to evaluate the significance of candidate attribute in the corresponding process of computing reduct, which may result in high elapsed time of searching reduct. To alleviate such a problem, an acceleration strategy for neighborhood based multi-granularity attribute reduction is proposed in this paper, which aims to improve the computational efficiency of searching reduct. Our proposed approach is actually realized through the positive approximation mechanism, and the processes of searching qualified attributes are executed through evaluating candidate attributes over the gradually reduced sample space rather than all samples. The experimental results over 12 UCI data sets demonstrate that the acceleration strategy can provide superior performance to the naive approach of deriving multi-granularity reduct in the elapsed time of computing reduct without generating different reducts.



2012 ◽  
Vol 2012 ◽  
pp. 1-24 ◽  
Author(s):  
Feng Hu ◽  
Guoyin Wang

The divide and conquer method is a typical granular computing method using multiple levels of abstraction and granulations. So far, although some achievements based on divided and conquer method in the rough set theory have been acquired, the systematic methods for knowledge reduction based on divide and conquer method are still absent. In this paper, the knowledge reduction approaches based on divide and conquer method, under equivalence relation and under tolerance relation, are presented, respectively. After that, a systematic approach, named as the abstract process for knowledge reduction based on divide and conquer method in rough set theory, is proposed. Based on the presented approach, two algorithms for knowledge reduction, including an algorithm for attribute reduction and an algorithm for attribute value reduction, are presented. Some experimental evaluations are done to test the methods on uci data sets and KDDCUP99 data sets. The experimental results illustrate that the proposed approaches are efficient to process large data sets with good recognition rate, compared with KNN, SVM, C4.5, Naive Bayes, and CART.



2008 ◽  
Vol 19 (3) ◽  
pp. 628-635 ◽  
Author(s):  
Liu Daohua ◽  
Yuan Sicong ◽  
Zhang Xiaolong ◽  
Wang Fazhan


Author(s):  
JIYE LIANG ◽  
ZHONGZHI SHI

Rough set theory is a relatively new mathematical tool for use in computer applications in circumstances which are characterized by vagueness and uncertainty. In this paper, we introduce the concepts of information entropy, rough entropy and knowledge granulation in rough set theory, and establish the relationships among those concepts. These results will be very helpful for understanding the essence of concept approximation and establishing granular computing in rough set theory.



Sign in / Sign up

Export Citation Format

Share Document