Concept-Oriented Query Language for Data Modeling and Analysis

Author(s):  
Alexandr Savinov

This chapter describes a novel query language, called the concept-oriented query language (COQL), and demonstrates how it can be used for data modeling and analysis. The query language is based on a novel construct, called concept, and two relations between concepts, inclusion and partial order. Concepts generalize conventional classes and are used for describing domain-specific identities. Inclusion relation generalizes inheritance and is used for describing hierarchical address spaces. Partial order among concepts is used to define two main operations: projection and de-projection. This chapter demonstrates how these constructs are used to solve typical tasks in data modeling and analysis such as logical navigation, multidimensional analysis, and inference.

2020 ◽  
Vol 245 ◽  
pp. 04044
Author(s):  
Jérôme Fulachier ◽  
Jérôme Odier ◽  
Fabian Lambert

This document describes the design principles of the Metadata Querying Language (MQL) implemented in ATLAS Metadata Interface (AMI), a metadata-oriented domain-specific language allowing to query databases without knowing the relation between tables. With this simplified yet generic grammar, MQL permits writing complex queries more simply than with Structured Query Language (SQL).


Author(s):  
Rusul Yousif Alsalhee ◽  
Abdulhussein Mohsin Abdullah

<p>The Holy Quran, due to it is full of many inspiring stories and multiple lessons that need to understand it requires additional attention when it comes to searching issues and information retrieval. Many works were carried out in the Holy Quran field, but some of these dealt with a part of the Quran or covered it in general, and some of them did not support semantic research techniques and the possibility of understanding the Quranic knowledge by the people and computers. As for others, techniques of data analysis, processing, and ontology were adopted, which led to directed these to linguistic aspects more than semantic. Another weakness in the previous works, they have adopted the method manually entering ontology, which is costly and time-consuming. In this paper, we constructed the ontology of Quranic stories. This ontology depended in its construction on the MappingMaster domain-specific language (MappingMaster DSL)technology, through which concepts and individuals can be created and linked automatically to the ontology from Excel sheets. The conceptual structure was built using the object role modeling (ORM) modeling language. SPARQL query language used to test and evaluate the propsed ontology by asking many competency questions and as a result, the ontology answered all these questions well.</p>


2020 ◽  
Vol 19 (5) ◽  
pp. 1191-1227 ◽  
Author(s):  
Qusai Ramadan ◽  
Daniel Strüber ◽  
Mattia Salnitri ◽  
Jan Jürjens ◽  
Volker Riediger ◽  
...  

Abstract Requirements are inherently prone to conflicts. Security, data-minimization, and fairness requirements are no exception. Importantly, undetected conflicts between such requirements can lead to severe effects, including privacy infringement and legal sanctions. Detecting conflicts between security, data-minimization, and fairness requirements is a challenging task, as such conflicts are context-specific and their detection requires a thorough understanding of the underlying business processes. For example, a process may require anonymous execution of a task that writes data into a secure data storage, where the identity of the writer is needed for the purpose of accountability. Moreover, conflicts not arise from trade-offs between requirements elicited from the stakeholders, but also from misinterpretation of elicited requirements while implementing them in business processes, leading to a non-alignment between the data subjects’ requirements and their specifications. Both types of conflicts are substantial challenges for conflict detection. To address these challenges, we propose a BPMN-based framework that supports: (i) the design of business processes considering security, data-minimization and fairness requirements, (ii) the encoding of such requirements as reusable, domain-specific patterns, (iii) the checking of alignment between the encoded requirements and annotated BPMN models based on these patterns, and (iv) the detection of conflicts between the specified requirements in the BPMN models based on a catalog of domain-independent anti-patterns. The security requirements were reused from SecBPMN2, a security-oriented BPMN 2.0 extension, while the fairness and data-minimization parts are new. For formulating our patterns and anti-patterns, we extended a graphical query language called SecBPMN2-Q. We report on the feasibility and the usability of our approach based on a case study featuring a healthcare management system, and an experimental user study.


Sign in / Sign up

Export Citation Format

Share Document