Optimal Configuration and Reconfiguration of Electric Distribution Networks

Author(s):  
Armin Ebrahimi Milani ◽  
Mahmood Reza Haghifam

Power loss reduction can be considered as one of the main purposes for a distribution system’s designers and operators, especially for recent non-governmental networks. Moreover, the nature of power loss challenges different methods to solve this problem, while various studies indicate effectiveness of reconfiguration and its high portion for this case. Thus, “reconfiguration” can be introduced as an optimization procedure to obtain economical high quality operation by changing the status of sectionalizing switches in these networks. Some major points such as using different switch types, considering number of switching and time varying loads, which are almost neglected or not applied simultaneously in most pervious essays, are the main motivation to propose this chapter. A heuristic practical scheme is proposed to perform optimal reconfiguration, and all previous neglected topics are fully discussed. Proposed method will apply to sample distribution networks, and the effectiveness of this method will be discussed through several case studies and comparisons.

2019 ◽  
Vol 39 (5) ◽  
pp. 917-930 ◽  
Author(s):  
Sarika Sharma ◽  
Smarajit Ghosh

Purpose This paper aims to develop a capacitor position in radial distribution networks with a specific end goal to enhance the voltage profile, diminish the genuine power misfortune and accomplish temperate sparing. The issue of the capacitor situation in electric appropriation systems incorporates augmenting vitality and peak power loss by technique for capacitor establishments. Design/methodology/approach This paper proposes a novel strategy using rough thinking to pick reasonable applicant hubs in a dissemination structure for capacitor situation. Voltages and power loss reduction indices of distribution networks hubs are shown by fuzzy enrollment capacities. Findings A fuzzy expert system containing a course of action of heuristic rules is then used to ascertain the capacitor position appropriateness of each hub in the circulation structure. The sizing of capacitor is solved by using hybrid artificial bee colony–cuckoo search optimization. Practical implications Finally, a short-term load forecasting based on artificial neural network is evaluated for predicting the size of the capacitor for future loads. The proposed capacitor allocation is implemented on 69-node radial distribution network as well as 34-node radial distribution network and the results are evaluated. Originality/value Simulation results show that the proposed method has reduced the overall losses of the system compared with existing approaches.


Distributed generation (DG) units can provide many benefits when they are incorporated along the distribution network/system. These benefits are more if DG units are connected at suitable nodes with appropriate rating otherwise, they may cause to increased power loss and poor voltage profile. In this work, optimal allocation (both location and size) problem is solved by considering power loss minimization as an objective function. An analytical method “index vector method (IVM)” is applied to find DG location. A new optimization algorithm “Whale Optimization Algorithm (WOA)” is employed to determine the DG rating. Two popularly known test systems “IEEE 33 & IEEE 69”bus systems are used to evaluate the efficacy of IVM and WOA.


Author(s):  
Mohsin Shahzad ◽  
Qazi Shafiullah ◽  
Waseem Akram ◽  
Muhammad Arif ◽  
Barkat Ullah

The passive power distribution networks are prone to imperfect voltage profile and higher power losses, especially at the far end of long feeders. The capacitor placement is studied in this article using a novel Mine Blast Algorithm (MBA). The voltage profile improvement and reduction in the net annual cost are also considered along with minimizing the power loss. The optimization problem is formulated and solved in two steps. Firstly, the Voltage Stability Index (VSI) is used to rank the nodes for placement of the capacitors. Secondly, from the priority list of nodes in the previous step, the MBA is utilized to provide the optimal location and sizes of the capacitors ensuring loss minimization, voltage profile improvement, and reduced net annual cost. Finally, the results are tested on 33 and 69 radial node systems in MATLAB. The results for the considered variables are presented which show a significant improvement in active and reactive power loss reduction and voltage profile with lesser reactive power injection.


2019 ◽  
Vol 8 (4) ◽  
pp. 11631-11636 ◽  

Due to deregulation, exponential growth in the electricity demand, integration of renewable energy sources, lack of analytical computing facility and expansion of network increases the complexity with poor operation of the network. Existing analytical computing facility is failed to give efficient and accurate results for secure operation of the distribution network. Many researchers are working to give potential solution to improve the performance of network operation considering the real time variables. In this paper minimization of power loss is chosen as objective function. Considering the network parameters the optimal placements with different combination of DTC, STATCOM and line reconfiguration are tested on IEEE-15 bus system using MiPower simulation package. The obtained result shows more than 50% power loss reduction, which leads to efficient and stress free operation of the distribution networks.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6008
Author(s):  
Teketay Mulu Beza ◽  
Yen-Chih Huang ◽  
Cheng-Chien Kuo

The electrical distribution system has experienced a number of important changes due to the integration of distributed and renewable energy resources. Optimal integration of distributed generators (DGs) and distribution network reconfiguration (DNR) of the radial network have significant impacts on the power system. The main aim of this study is to optimize the power loss reduction and DG penetration level increment while keeping the voltage profile improvements with in the permissible limit. To do so, a hybrid of analytical approach and particle swarm optimization (PSO) are proposed. The proposed approach was tested on 33-bus and 69-bus distribution networks, and significant improvements in power loss reduction, DG penetration increment, and voltage profile were achieved. Compared with the base case scenario, power loss was reduced by 89.76% and the DG penetration level was increased by 81.59% in the 69-bus test system. Similarly, a power loss reduction of 82.13% and DG penetration level increment of 80.55% was attained for the 33-bus test system. The simulation results obtained are compared with other methods published in the literature.


The main aim of the distribution system is delivery the power to the consumers. Because of, aging of electrical infrastructure, old control mechanism, increased power demand causing exploitation of the present electrical networks leads to low voltage profile, more active and reactive power loss with various power quality related issues causing poor network operation. In this method maximization of voltage profile with energy loss minimization is carried using network reconfiguration along with optimal siting of the distributed generation (DG). The proposed methodology is carried out on five bus system. The obtained results are impressive interms of voltage stability and power loss reduction.


Author(s):  
Sunday Adeleke Salimon ◽  
Abiodun Aderemi Baruwa ◽  
Saheed Oluwasina Amuda ◽  
Hafiz Adesupo Adeleke

Optimal allocation of shunt capacitors in the radial distribution networks results in both technical and economic benefits. This paper presents a two-stage method of Loss Sensitivity Factor (LSF) and Cuckoo Search Algorithm (CSA) to find the optimal size and location of shunt capacitors with the objective of minimizing cost due to power loss and reactive power compensation of the distribution networks. The first stage utilizes the LSF to predict the potential candidate buses for shunt capacitor placement thereby reducing the search space of the second stage and avoiding unnecessary repetitive load flow while the second stage uses the CSA to find the size and actual placement of the shunt capacitors satisfying the operating constraints. The applicability of the proposed two stage method is tested on the standard IEEE 33-bus and Ayepe 34-bus Nigerian radial distribution networks of the Ibadan Electricity Distribution Company. After running the algorithm, the simulation results gave percentage real and reactive power loss reduction of 34.28% and 28.94% as compared to the base case for the IEEE 33-bus system while the percentage real and reactive power loss reduction of 22.89% and 21.40% was recorded for the Ayepe 34-bus system. Comparison of the obtained results with other techniques in literatures for the standardized IEEE 33-bus reveals the efficiency of the proposed method as it achieved technical benefits of reduced total power loss, improved voltage profile and bus voltage stability, and the economic benefit of reduced total cost due to electrical power loss and compensation.


Sign in / Sign up

Export Citation Format

Share Document