Artificial Intelligence for Evaluating the Mental Workload of Air Traffic Controllers

Author(s):  
Tetiana Shmelova ◽  
Yuliya Sikirda

In this chapter, the authors propose the application of artificial intelligence (namely expert system and neural network) for estimating the mental workload of air traffic controllers while working at different control centers (sectors): terminal control center, approach control center, area control center. At each air traffic control center, air traffic controllers will perform the following procedures: coordination between units, aircraft transit, climbing, and descending. So with the help of the artificial intelligence (AI) and its branches expert system and neural network, it is possible to estimate the mental workload of dispatchers for a different number of aircraft, compare the workload intensity of the air traffic control sectors, and optimize the workload between sectors and control centers. The differentiating factor of an AI system from a standard software system is the characteristic ability to learn, improve, and predict. Real dispatchers, students, graduate students, and teachers of the National Aviation University took part in these researches.

1989 ◽  
pp. 5-10
Author(s):  
Ronald Bolton ◽  
Russell Hoover

The Aeronautical Charting Division (ACD), National Ocean Service (NOS), National Oceanic and Atmospheric Administration (NOAA) produces the Radar Video Maps (RVM's) used by air traffic controllers to monitor and control the Nation's airspace. These complex maps depict the local Federal Aviation Administration (FAA) airspace definition and show airways, intersections, holding patterns, selected navigational aids, special-use airspace boundaries, and other radar display elements critical to the traffic controller's radar scope displays. Previously produced by tedious manual methods, the ACD's Aeronautical Chart Automated Production (ACAP) system now provides the tools for automated production of this integral part of the FAA air traffic control system.


Author(s):  
N. O. Lishchynovska ◽  
◽  
O. Yu. Ilyin ◽  
Yu. P. Boyko ◽  
◽  
...  

Analysis of the problem of implementation of automated air traffic control systems showed that automation in aviation began to be used primarily to solve navigation problems and control various systems. The widespread introduction of computer-aided automation in ground-based air traffic control systems has freed air traffic controllers and air traffic controllers from time-consuming computational operations and made it possible to automate a number of complex tasks and thus significantly increase flight safety. Further development of aviation equipment, information technology, radio navigation and surveillance requires a rapid solution of complex problems with high accuracy, which necessitated the improvement of existing and creation of fundamentally new technical means that meet the requirements of modern aviation and international air traffic regulations. Such technical means include EGNOS systems. The study of the proposed location for the EGNOS RIMS station at the Kyiv International Airport (Zhulyany) was carried out. Thanks to the fruitful support of the DCA provided by the GSA contractor ThalesAleniaSpace, the study helped to gather the necessary data to work offline. This offline processing is complete and issues have been identified. The interference that has been selected affects the location. One of the key criteria for site selection is the radio frequency (RF) environment, as environmental conditions have a direct negative impact on the performance of the EGNOS system. It turns out that the measurements carried out during the study highlighted the sources of interference, the power of which exceeds the required level in the used frequency bands GPS L1 and L2. as these interferences will adversely affect the performance of the EGNOS RIMS receiver. One way to restore compliance is to study these interference sources and remove them if possible. On the other hand, the proposed location at Kyiv International Airport (Zhulyany) provides a promising level of compliance for life safety services.


Author(s):  
Han Qiao ◽  
Jingyu Zhang ◽  
Liang Zhang ◽  
Yazhe Li ◽  
Shayne Loft

Objective This study examined whether professional air traffic controllers (ATCos) were subject to peak-end effects in reporting their mental workload after performing an air traffic control task, and in predicting their mental workload in future scenarios. Background In affective experience studies, people’s evaluation of a period of experience is strongly influenced by the most intense (peak) point and the endpoint. However, whether the effects exist in mental workload evaluations made by professional operators is still not known. Method In Study 1, 20 ATCos performed air traffic control scenarios on high-fidelity radar simulators and reported their mental workload. We used a 2 (high peak, low peak) × 2 (high end, low end) within-subject design. In Study 2, another group of 43 ATCos completed a survey asking them to predict their mental workload given the same air traffic control scenarios. Results In Study 1, ATCos reported higher mental workload after completing the high-peak and the high-end scenarios. In contrast, in Study 2, ATCos predicted the peak workload effect but not the end workload effect when asked to predict their experience in dealing with the same scenarios. Conclusion Peak and end effects exist in subjective mental workload evaluation, but experts only had meta-cognitive awareness of the peak effect, and not the end effect. Application Researchers and practitioners that use subjective workload estimates for work design decisions need to be aware of the potential impact of peak and end task demand effects on subjective mental workload ratings provided by expert operators.


Aerospace ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 170
Author(s):  
Ricardo Palma Fraga ◽  
Ziho Kang ◽  
Jerry M. Crutchfield ◽  
Saptarshi Mandal

The role of the en route air traffic control specialist (ATCS) is vital to maintaining safety and efficiency within the National Airspace System (NAS). ATCSs must vigilantly scan the airspace under their control and adjacent airspaces using an En Route Automation Modernization (ERAM) radar display. The intent of this research is to provide an understanding of the expert controller visual search and aircraft conflict mitigation strategies that could be used as scaffolding methods during ATCS training. Interviews and experiments were conducted to elicit visual scanning and conflict mitigation strategies from the retired controllers who were employed as air traffic control instructors. The interview results were characterized and classified using various heuristics. In particular, representative visual scanpaths were identified, which accord with the interview results of the visual search strategies. The highlights of our findings include: (1) participants used systematic search patterns, such as circular, spiral, linear or quadrant-based, to extract operation-relevant information; (2) participants applied an information hierarchy when aircraft information was cognitively processed (altitude -> direction -> speed); (3) altitude or direction changes were generally preferred over speed changes when imminent potential conflicts were mitigated. Potential applications exist in the implementation of the findings into the training curriculum of candidates.


Sign in / Sign up

Export Citation Format

Share Document