fractional pdes
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 43)

H-INDEX

13
(FIVE YEARS 4)

2022 ◽  
Vol 6 (1) ◽  
pp. 32
Author(s):  
Hegagi Mohamed Ali ◽  
Hijaz Ahmad ◽  
Sameh Askar ◽  
Ismail Gad Ameen

In this work, we present a modified generalized Mittag–Leffler function method (MGMLFM) and Laplace Adomian decomposition method (LADM) to get an analytic-approximate solution for nonlinear systems of partial differential equations (PDEs) of fractional-order in the Caputo derivative. We apply the MGMLFM and LADM on systems of nonlinear time-fractional PDEs. Precisely, we consider some important fractional-order nonlinear systems, namely Broer–Kaup (BK) and Burgers, which have found major significance because they arise in many physical applications such as shock wave, wave processes, vorticity transport, dispersal in porous media, and hydrodynamic turbulence. The analysis of these methods is implemented on the BK, Burgers systems and solutions have been offered in a simple formula. We show our results in figures and tables to demonstrate the efficiency and reliability of the used methods. Furthermore, our outcome converges rapidly to the given exact solutions.


2022 ◽  
Vol 2022 ◽  
pp. 1-20
Author(s):  
Khadijeh Sadri ◽  
Hossein Aminikhah

This work devotes to solving a class of delay fractional partial differential equations that arises in physical, biological, medical, and climate models. For this, a numerical scheme is implemented that applies operational matrices to convert the main problem into a system of algebraic equations; then, solving the resultant system leads to an approximate solution. The two-variable Chebyshev polynomials of the sixth kind, as basis functions in the proposed method, are constructed by the one-variable ones, and their operational matrices are derived. Error bounds of approximate solutions and their fractional and classical derivatives are computed. With the aid of these bounds, a bound for the residual function is estimated. Three illustrative examples demonstrate the simplicity and efficiency of the proposed method.


2022 ◽  
Author(s):  
Hussein Gatea Taher ◽  
Hijaz Ahmad ◽  
Jagdev Singh ◽  
Devendra Kumar ◽  
Hassan Kamil Jassim
Keyword(s):  

2021 ◽  
Vol 33 (8) ◽  
pp. 101604
Author(s):  
Fuzhang Wang ◽  
Imtiaz Ahmad ◽  
Hijaz Ahmad ◽  
M.D. Alsulami ◽  
K.S. Alimgeer ◽  
...  

Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1254
Author(s):  
Saima Rashid ◽  
Aasma Khalid ◽  
Sobia Sultana ◽  
Zakia Hammouch ◽  
Rasool Shah ◽  
...  

We put into practice relatively new analytical techniques, the Shehu decomposition method and the Shehu iterative transform method, for solving the nonlinear fractional coupled Korteweg-de Vries (KdV) equation. The KdV equation has been developed to represent a broad spectrum of physics behaviors of the evolution and association of nonlinear waves. Approximate-analytical solutions are presented in the form of a series with simple and straightforward components, and some aspects show an appropriate dependence on the values of the fractional-order derivatives that are, in a certain sense, symmetric. The fractional derivative is proposed in the Caputo sense. The uniqueness and convergence analysis is carried out. To comprehend the analytical procedure of both methods, three test examples are provided for the analytical results of the time-fractional KdV equation. Additionally, the efficiency of the mentioned procedures and the reduction in calculations provide broader applicability. It is also illustrated that the findings of the current methodology are in close harmony with the exact solutions. It is worth mentioning that the proposed methods are powerful and are some of the best procedures to tackle nonlinear fractional PDEs.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Bander N. Almutairi ◽  
Ahmed E. Abouelregal ◽  
Bandar Bin-Mohsin ◽  
M. D. Alsulami ◽  
Phatiphat Thounthong

Fractional partial differential equation models are frequently used to several physical phenomena. Despite the ability to express many complex phenomena in different disciplines, researchers have found that multiterm time-fractional PDEs improve the modeling accuracy for describing diffusion processes in contrast to the results of a single term. Nowadays, it attracts the attention of the active researchers. The aim of this work is concerned with the approximate numerical solutions of the three-term time-fractional Sobolev model equation using computationally attractive and reliable technique, known as a local meshless method. Because of the meshless character and the simple application in higher dimensions, there is a growing interest in meshless techniques. To assess the reliability and accuracy of the proposed method, three test problems and two types of irregular domains are taken into account.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Tobias Danczul ◽  
Joachim Schöberl

Abstract We present a novel numerical scheme to approximate the solution map s ↦ u(s) := 𝓛−s f to fractional PDEs involving elliptic operators. Reinterpreting 𝓛−s as an interpolation operator allows us to write u(s) as an integral including solutions to a parametrized family of local PDEs. We propose a reduced basis strategy on top of a finite element method to approximate its integrand. Unlike prior works, we deduce the choice of snapshots for the reduced basis procedure analytically. The integral is interpreted in a spectral setting to evaluate the surrogate directly. Its computation boils down to a matrix approximation L of the operator whose inverse is projected to the s-independent reduced space, where explicit diagonalization is feasible. Exponential convergence rates are proven rigorously. A second algorithm is presented to avoid inversion of L. Instead, we directly project the matrix to the subspace, where its negative fractional power is evaluated. A numerical comparison with the predecessor highlights its competitive performance.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 380
Author(s):  
Wensheng Wang

High order and fractional PDEs have become prominent in theory and in modeling many phenomena. In this paper, we study spatial moduli of non-differentiability for the fourth order time fractional stochastic partial integro-differential equations (SPIDEs) and their gradient, driven by space-time white noise. We use the underlying explicit kernels and spectral/harmonic analysis, yielding spatial moduli of non-differentiability for time fractional SPIDEs and their gradient. On one hand, this work builds on the recent works on delicate analysis of regularities of general Gaussian processes and stochastic heat equation driven by space-time white noise. On the other hand, it builds on and complements Allouba and Xiao’s earlier works on spatial uniform and local moduli of continuity of time fractional SPIDEs and their gradient.


Sign in / Sign up

Export Citation Format

Share Document