Statistical Analysis of Major Flood Events During 1980-2015 in Middle Ganga Plain, Ganga River Basin, India

Author(s):  
Aman Arora ◽  
Masood Ahsan Siddiqui ◽  
Manish Pandey

To understand the vicious nature of extreme flood events for the most flood prone region of Ganga River Basin, this study uses 36 years (1980-2015) of flood records from Dartmouth Flood Observatory (DFO) and the Centre for Research on the Epidemiology of Disasters (CRED) Emergency Events Database (EM-DAT). Further, the Water Level (WL) data collected from Central Water Commission (CWC) for same period are utilized to compare with the data of DFO and EM-DAT to identify the major flood events recorded in the Middle Ganga Plain (MGP). The final dataset comprises of 15 attributes (parameters) and is prepared of identified 99 flood instances for statistical analysis. The descriptive statistical analysis is performed for the following parameters: severity class, flood duration in days, affected flood area, flood magnitude, total number of deaths, and total count of displaced people. The graphical representation of all selected parameters provides an insight of common flood events, which lie between ±95% confidence level and exclude the major events as outliers.

2017 ◽  
Vol 25 (3) ◽  
pp. 449-458 ◽  
Author(s):  
K. Prakash ◽  
S. Singh ◽  
T. Mohanty ◽  
K. Chaubey ◽  
C. K. Singh

Geology ◽  
2020 ◽  
Vol 48 (8) ◽  
pp. 819-825 ◽  
Author(s):  
Ben Pears ◽  
Antony G. Brown ◽  
Phillip S. Toms ◽  
Jamie Wood ◽  
David Sanderson ◽  
...  

Abstract River confluences can be metastable and contain valuable geological records of catchment response to decadal- to millennial-scale environmental change. However, in alluvial reaches, flood stratigraphies are particularly hard to date using 14C. In this paper, we use a novel combination of optically stimulated luminescence and multiproxy sedimentological analyses to provide a flood record for the confluence of the Rivers Severn and Teme (United Kingdom) over the past two millennia, which we compare with independent European climate records. The results show that by ca. 2000 yr B.P., the Severn-Teme confluence had stabilized and overbank alluviation had commenced. Initially, this occurred from moderately high flood magnitudes between ca. 2000 and 1800 yr B.P. (50 BCE–150 CE), but was followed from 1800 to 1600 yr B.P. (150–350 CE) by fine alluvial deposition and decreased flood intensity. From 1600 to 1400 yr B.P. (350–550 CE), the accumulation rate increased, with evidence of large flood events associated with the climatic deterioration of the Dark Age Cold Period. Following a period of reduced flood activity after ca. 1400 yr B.P. (ca. 550 CE), larger flood events and increase in accumulation rate once again became more prevalent from ca. 850 yr B.P. (ca. 1100 CE), coincident with the start of the Medieval Climate Anomaly, a period associated with warmer, wetter conditions and increased land-use intensity. This state persisted until ca. 450 yr B.P. (ca. 1500 CE), after which increased flood magnitudes can be associated with climatic variations during the Little Ice Age. We demonstrate that from the combination of high-resolution dating techniques and multiple analytical parameters, distinctive phases of relative flood magnitude versus flood duration can be determined to a detailed chronological precision beyond that possible from 14C dating. This permits the identification of the regional factors behind floodplain sedimentation, which we correlate with the intensification of land-use and climatic drivers over the last two millennia.


2021 ◽  
Author(s):  
Paul Hudson ◽  
Franklin Heitmuller ◽  
Samuel Muñoz ◽  
Jansen Costello

<p>Flood sedimentary deposits vary due to upper basin and lower basin controls. In this study we focus on overbank sediment thickness, which over longer periods drives changes to riparian aquatic habitat and floodplain construction. The study setting is a ~25 km long segment of the lower Mississippi alluvial valley, between Natchez, MS and Red River Landing, LA. We report new field data for overbank sedimentation generated by compound flooding over 2018 and 2019 hydrologic years, and compare with sedimentation data from prior large flood events. Overbank conditions in 2018 and 2019 persisted for 286 days (at Natchez, MS). During the 2019 hydrologic year the Mississippi was overbank for a record duration of 216 days, resulting in a much greater duration of overbank sedimentation than the 2011 (53 days) and 1973 (90 days) flood events.</p><p>The thickness of overbank deposits are reported for 48 field sites across a range of depositional environments typical of large lowland meandering river floodplains. Flood deposits were sampled in October 2019 using conventional field sampling procedures, including sedimentation traps (artificial grass mats installed in October 2017) and recognition of recent sediment deposited atop buried organic layers. The thickness of each reported sample is an average of three measurements obtained at each field site.</p><p>The average thickness of flood deposit samples over 2018-2019 hydrologic years is 71 mm, with variability according to distance from channel and floodplain depositional environment. Maximum sedimentation was associated with crevasse (750 mm) and sand sheet (1,430 mm) deposition along the crest of natural levees. Sedimentation thickness decreases within ~250 m of the channel, but remains high at a distance of ~3.5 km (30 mm). Beyond the range of sand sheet deposition, overbank deposition is likely influenced by variability in floodplain hydrology and geomorphology across natural levee (181 mm), meander scroll (30 mm), old channel (77 mm), and backswamp (108 mm) environments. High backswamp sedimentation at the study site is likely influenced by historic hydraulic engineering for flood control, which has altered local sedimentation patterns.</p><p>The 2018-2019 sedimentation data are contextualized by comparison with field data from the record 2011 magnitude flood (peak Q of 65,978 m<sup>3</sup>/s at Vicksburg, MS, USGS 0728900) and the historic 1973 flood (55,558 m<sup>3</sup>/s).  Average sediment thickness for the 2011 and 1973 overbank deposits was 42 mm (n=49) and 230 mm (n=31), respectively. The 2018-2019 daily sedimentation rate (0.25 mm/day) is much less than 2011 (0.75 mm/day). Thus, the much thicker sedimentary deposits for the 2018-2019 events suggests the greater importance of flood duration – rather than flood magnitude – to overall floodplain processes and alluvial fill chronologies along lowland rivers. The much lower flood sedimentation rate for 2018-2019 in comparison with 1973 (2.49 mm/day) may reveal the persistent decline in Mississippi suspended sediment loads since the early 1950s. Study results are further contextualized by considering corresponding event-based discharge – suspended sediment dynamics, sediment province, as well as flood hydroclimatology.</p>


Sign in / Sign up

Export Citation Format

Share Document