flood magnitude
Recently Published Documents


TOTAL DOCUMENTS

151
(FIVE YEARS 51)

H-INDEX

21
(FIVE YEARS 2)

Author(s):  
Stefano Basso ◽  
Gianluca Botter ◽  
Ralf Merz ◽  
Arianna Miniussi

Abstract Magnitude and frequency are prominent features of river floods informing design of engineering structures, insurance premiums and adaptation strategies. Recent advances yielding a formal characterization of these variables from a joint description of soil moisture and daily runoff dynamics in river basins are here systematized to highlight their chief outcome: the PHysically-based Extreme Value (PHEV) distribution of river flows. This is a physically-based alternative to empirical estimates and purely statistical methods hitherto used to characterize extremes of hydro-meteorological variables. Capabilities of PHEV for predicting flood magnitude and frequency are benchmarked against a standard distribution and the latest statistical approach for extreme estimation, by using both an extensive observational dataset and long synthetic series of streamflow generated for river basins from contrasting hydro-climatic regions. The analyses outline the domain of applicability of PHEV and reveal its fairly unbiased capabilities to estimate flood magnitudes with return periods much longer than the sample size used for calibration in a wide range of case studies. The results also emphasize reduced prediction uncertainty of PHEV for rare floods, notably if the flood magnitude-frequency curve displays an inflection point. These features, arising from the mechanistic understanding embedded in the novel distribution of the largest river flows, are key for a reliable assessment of the actual flooding hazard associated to poorly sampled rare events, especially when lacking long observational records.


2021 ◽  
Vol 11 (20) ◽  
pp. 9463
Author(s):  
Wilfried Hagg ◽  
Stefan Ram ◽  
Alexander Klaus ◽  
Simon Aschauer ◽  
Sinan Babernits ◽  
...  

The frequency of glacier lake outbursts floods (GLOFs) is likely to increase with the ongoing glacier retreat, which produces new glacial lakes and enlarges existing ones. Here, we simulate the outburst of a potentially dangerous glacial lake in Bhutan by applying hydrodynamic modelling. Although the lake volume is known, several parameters connected to the dam breach and the routing of the flood are rough estimates or assumptions, which introduce uncertainties in the results. For this reason, we create an ensemble of nine outburst scenarios. The simulation of magnitude and timing of possible inundation depths is an important asset to prepare emergency action plans. For our case study in the Mo Chu River Basin, the results show that, even under the worst case scenario, little damage to residential buildings can be expected. However, such an outburst flood would probably destroy infrastructure and farmland and might even affect the operation of a hydroelectric powerplant more than 120 km downstream the lake. Our simulation efforts revealed that, by using a 30-m elevation model instead of a 5-m raster, flood magnitude and inundation areas are overestimated significantly, which highly suggests the use of high-resolution terrain data. These results may be a valuable input for risk mitigation efforts.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2706
Author(s):  
Federico Antolini ◽  
Eric Tate

Distributed attenuation in flood management relies on small and low-impact runoff attenuating features variously distributed within a catchment. Distributed systems of reservoirs, natural flood management, and green infrastructure are practical examples of distributed attenuation. The effectiveness of attenuating features lies in their ability to work in concert, by reducing and slowing runoff in strategic parts of the catchment, and desynchronizing flows. The spatial distribution of attenuating features plays an essential role in the process. This article proposes a framework to place features in a hydrologic network, group them into spatially distributed systems, and analyze their flood attenuation effects. The framework is applied to study distributed systems of reservoirs in a rural watershed in Iowa, USA. The results show that distributed attenuation can be an effective alternative to a single centralized flood mitigation approach. The different flow peak attenuation of considered distributed systems suggest that the spatial distribution of features significantly influences flood magnitude at the catchment scale. The proposed framework can be applied to examine the effectiveness of distributed attenuation, and its viability as a widespread flood attenuation strategy in different landscapes and at multiple scales.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Manuela I. Brunner ◽  
Daniel L. Swain ◽  
Raul R. Wood ◽  
Florian Willkofer ◽  
James M. Done ◽  
...  

AbstractPrecipitation extremes will increase in a warming climate, but the response of flood magnitudes to heavier precipitation events is less clear. Historically, there is little evidence for systematic increases in flood magnitude despite observed increases in precipitation extremes. Here we investigate how flood magnitudes change in response to warming, using a large initial-condition ensemble of simulations with a single climate model, coupled to a hydrological model. The model chain was applied to historical (1961–2000) and warmer future (2060–2099) climate conditions for 78 watersheds in hydrological Bavaria, a region comprising the headwater catchments of the Inn, Danube and Main River, thus representing an area of expressed hydrological heterogeneity. For the majority of the catchments, we identify a ‘return interval threshold’ in the relationship between precipitation and flood increases: at return intervals above this threshold, further increases in extreme precipitation frequency and magnitude clearly yield increased flood magnitudes; below the threshold, flood magnitude is modulated by land surface processes. We suggest that this threshold behaviour can reconcile climatological and hydrological perspectives on changing flood risk in a warming climate.


2021 ◽  
Author(s):  
Sunna Kupfer ◽  
Sara Santamaria-Aguilar ◽  
Lara van Niekerk ◽  
Melanie Lück-Vogel ◽  
Athanasios Vafeidis

Abstract. Recent studies have drawn special attention to the significant dependencies between flood drivers and the occurrence of compound flood events in coastal areas. This study investigates compound flooding from tides, river discharge (Q) and specifically waves using a hydrodynamic model at Breede Estuary, South Africa. We quantify vertical and horizontal differences in flood characteristics caused by driver interaction, and assess the contribution of waves. Therefore, we compare flood characteristics resulting from compound flood scenarios to those in which single drivers are omitted. We find that flood characteristics are more sensitive to Q than to waves, particularly when the latter only coincide with high spring tides. When interacting with Q, however, the contribution of waves is high, causing 10–12 % larger flood extents and 45–85 cm higher water depths, as waves caused backwater effects and raised water levels inside the lower reaches of the estuary. With higher wave intensity, the first flooding began up to 12 hours earlier. Our findings provide insights on compound flooding in terms of flood magnitude and timing at a South African estuary and demonstrate the need to account for the effects of compound events, including waves, in future flood impact assessments of open South African estuaries.


2021 ◽  
Author(s):  
Rahul Jaiswal ◽  
T. R. Nayak ◽  
A. K. Lohani ◽  
R. V. Galkate

Abstract The computation of flood magnitude and its likely occurrence to design different hydraulic structures are major challenges to the research community. The present study has been carried out to identify the homogeneous regions in the Mahanadi basin in Chhattisgarh part (data from 26 gauge/discharge sites) of India using conventional and clustering-based homogeneity tests and then computation and identification of probability weighted moment and L-moment based best regional distributions for different regions. Different simple to complex distributions like Extreme Value-I, Generalized Extreme Value, Logistic, Generalized Logistic, Generalized Pareto, Normal and Log-normal, Wakeby-4, and Wakeby-5 was used in the analysis through standardizing procedure to compute regional distributions. The best-fit distribution selected by simulating several series and compute L-kurtosis along with the L-moment ratio diagram. The homogeneity analysis confirmed that this basin can broadly be divided into two different homogeneous regions with 15 and 11 stations in the first (Region-1) and second (Region-2) regions respectively. The GEV distribution was found best suited for Region-1 while the Generalized Pareto worked well for Region-2. To make results more convenient for field application, catchment area-based equations were converted in the form of Dicken’s or Ryve’s formulae for these regions to estimate flood quantiles of any return period.


2021 ◽  
Vol 25 (7) ◽  
pp. 3875-3895
Author(s):  
Jamie Towner ◽  
Andrea Ficchí ◽  
Hannah L. Cloke ◽  
Juan Bazo ◽  
Erin Coughlan de Perez ◽  
...  

Abstract. Flooding in the Amazon basin is frequently attributed to modes of large-scale climate variability, but little attention is paid to how these modes influence the timing and duration of floods despite their importance to early warning systems and the significant impacts that these flood characteristics can have on communities. In this study, river discharge data from the Global Flood Awareness System (GloFAS 2.1) and observed data at 58 gauging stations are used to examine whether positive or negative phases of several Pacific and Atlantic indices significantly alter the characteristics of river flows throughout the Amazon basin (1979–2015). Results show significant changes in both flood magnitude and duration, particularly in the north-eastern Amazon for negative El Niño–Southern Oscillation (ENSO) phases when the sea surface temperature (SST) anomaly is positioned in the central tropical Pacific. This response is not identified for the eastern Pacific index, highlighting how the response can differ between ENSO types. Although flood magnitude and duration were found to be highly correlated, the impacts of large-scale climate variability on these characteristics are non-linear; some increases in annual flood maxima coincide with decreases in flood duration. The impact of flood timing, however, does not follow any notable pattern for all indices analysed. Finally, observed and simulated changes are found to be much more highly correlated for negative ENSO phases compared to the positive phase, meaning that GloFAS struggles to accurately simulate the differences in flood characteristics between El Niño and neutral years. These results have important implications for both the social and physical sectors working towards the improvement of early warning action systems for floods.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1721
Author(s):  
Mengistu A. Jemberie ◽  
Assefa M. Melesse

In recent years, many urban areas in Ethiopia have experienced frequent flood events as a result of climate change and urban sprawl. Unplanned and unsustainable poor urban storm water management strategies will aggravate the impact and frequency of flood occurrence. In this study, impacts of urbanization and climate change on generated flood magnitude are analyzed using the urban hydrological model of Storm Water Management Model (SWMM) and Low Impact Development (LID) sustainable land use optimization techniques. Three rainfall distribution patterns (TS1, TS2 and TS3) in combination with rainfall duration periods of 10, 30 and 60 min and a pessimistic climate change scenario of RCP 4.5 compared to RCP 8.5 are used for the analysis purpose for selected infiltration and storage LID techniques (Bio-Retention Cell, Infiltration Trench and Rain Barrel). The study results showed that combined LID techniques have a significant impact on urban flood reduction of up to 75%. This significant amount of flood reduction is greater than the amount of excess flood magnitude which occurred as a result of climate change using the most pessimistic climate change scenario. The study results also confirmed that rainfall patterns have a significant impact on peak discharge for shorter rainfall durations. This study highly recommends using cost effective, easy and environmental adaptive and sustainable LID techniques for urban flood management in addition to existing drainage structures.


2021 ◽  
Author(s):  
Amy J. Jenson ◽  
Jason M. Amundson ◽  
Jonathan Kingslake ◽  
Eran Hood

Abstract. We combine a glacier outburst flood model with a glacier flow model to investigate decadal to centennial variations in outburst floods originating from ice-dammed marginal basins. Marginal basins form due to retreat and detachment of tributary glaciers, a process that often results in remnant ice being left behind. The remnant ice, which can act like an ice shelf or break apart into a pack of icebergs, limits the basin storage capacity but also exerts pressure on the underlying water and promotes drainage. We find that during glacier retreat there is a strong, nearly linear relationship between flood water volume and peak discharge for individual basins, despite large changes in glacier and remnant ice volumes that are expected to impact flood hydrographs. Consequently, peak discharge increases over time as long as there is remnant ice remaining in a basin, the peak discharge begins to decrease once a basin becomes ice free, and similar size outburst floods can occur for very different glacier volumes. We also find that the temporal variability in outburst flood magnitude depends on how the floods initiate. Basins that connect to the subglacial hydrological system only after reaching flotation yield greater long-term variability in outburst floods than basins that are continuously connected to the subglacial hydrological system (and therefore release floods that initiate before reaching flotation). Our results highlight the importance of improving our understanding of both changes in basin geometry and outburst flood initiation mechanisms in order to better assess outburst flood hazards and impacts on landscape and ecosystem evolution.


Author(s):  
Adannaya Ivo Simeon ◽  
Emmanuel Azom Edim ◽  
Idongesit Efaemiode Eteng ◽  
Chibuzo Chimezie Ukegbu

Sign in / Sign up

Export Citation Format

Share Document