Population Based Techniques for Solving the Student Project Allocation Problem

2020 ◽  
Vol 11 (2) ◽  
pp. 192-207 ◽  
Author(s):  
Patrick Kenekayoro ◽  
Promise Mebine ◽  
Bodouowei Godswill Zipamone

The student project allocation problem is a well-known constraint satisfaction problem that involves assigning students to projects or supervisors based on a number of criteria. This study investigates the use of population-based strategies inspired from physical phenomena (gravitational search algorithm), evolutionary strategies (genetic algorithm), and swarm intelligence (ant colony optimization) to solve the Student Project Allocation problem for a case study from a real university. A population of solutions to the Student Project Allocation problem is represented as lists of integers, and the individuals in the population share information through population-based heuristics to find more optimal solutions. All three techniques produced satisfactory results and the adapted gravitational search algorithm for discrete variables will be useful for other constraint satisfaction problems. However, the ant colony optimization algorithm outperformed the genetic and gravitational search algorithms for finding optimal solutions to the student project allocation problem in this study.

Entropy ◽  
2019 ◽  
Vol 21 (8) ◽  
pp. 766 ◽  
Author(s):  
Boxin Guan ◽  
Yuhai Zhao ◽  
Yuan Li

Solving the constraint satisfaction problem (CSP) is to find an assignment of values to variables that satisfies a set of constraints. Ant colony optimization (ACO) is an efficient algorithm for solving CSPs. However, the existing ACO-based algorithms suffer from the constructed assignment with high cost. To improve the solution quality of ACO for solving CSPs, an ant colony optimization based on information entropy (ACOE) is proposed in this paper. The proposed algorithm can automatically call a crossover-based local search according to real-time information entropy. We first describe ACOE for solving CSPs and show how it constructs assignments. Then, we use a ranking-based strategy to update the pheromone, which weights the pheromone according to the rank of these ants. Furthermore, we introduce the crossover-based local search that uses a crossover operation to optimize the current best assignment. Finally, we compare ACOE with seven algorithms on binary CSPs. The experimental results revealed that our method outperformed the other compared algorithms in terms of the cost comparison, data distribution, convergence performance, and hypothesis test.


Author(s):  
Ying-Ying Koay ◽  
Jian-Ding Tan ◽  
Chin-Wai Lim ◽  
Siaw-Paw Koh ◽  
Sieh-Kiong Tiong ◽  
...  

<span>Optimization algorithm has become one of the most studied branches in the fields of artificial intelligent and soft computing. Many powerful optimization algorithms with global search ability can be found in the literature. Gravitational Search Algorithm (GSA) is one of the relatively new population-based optimization algorithms. In this research, an Adaptive Gravitational Search Algorithm (AGSA) is proposed. The AGSA is enhanced with an adaptive search step local search mechanism. The adaptive search step begins the search with relatively larger step size, and automatically fine-tunes the step size as iterations go. This enhancement grants the algorithm a more powerful exploitation ability, which in turn grants solutions with higher accuracies. The proposed AGSA was tested in a test suit with several well-established optimization test functions. The results showed that the proposed AGSA out-performed other algorithms such as conventional GSA and Genetic Algorithm in the benchmarking of speed and accuracy. It can thus be concluded that the proposed AGSA performs well in solving local and global optimization problems. Applications of the AGSA to solve practical engineering optimization problems can be considered in the future.</span>


2019 ◽  
Vol 2 (3) ◽  
pp. 508-517
Author(s):  
FerdaNur Arıcı ◽  
Ersin Kaya

Optimization is a process to search the most suitable solution for a problem within an acceptable time interval. The algorithms that solve the optimization problems are called as optimization algorithms. In the literature, there are many optimization algorithms with different characteristics. The optimization algorithms can exhibit different behaviors depending on the size, characteristics and complexity of the optimization problem. In this study, six well-known population based optimization algorithms (artificial algae algorithm - AAA, artificial bee colony algorithm - ABC, differential evolution algorithm - DE, genetic algorithm - GA, gravitational search algorithm - GSA and particle swarm optimization - PSO) were used. These six algorithms were performed on the CEC&amp;rsquo;17 test functions. According to the experimental results, the algorithms were compared and performances of the algorithms were evaluated.


Sign in / Sign up

Export Citation Format

Share Document