scholarly journals A Novel Multi-Objective Nonlinear Discrete Binary Gaining-Sharing knowledge-based Optimization Algorithm Optimum Scheduling of Flights for Residual S

2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

GSK algorithm is based on the concept of how humans acquire and share knowledge through their lifespan. Discrete Binary version of GSK named novel binary Gaining Sharing knowledge-based optimization algorithm (DBGSK) depends on mainly two binary stages: binary junior gaining sharing stage and binary senior gaining sharing stage with knowledge factor 1. These two stages enable BGSK for exploring and exploitation of the search space efficiently and effectively to solve problems in binary space. Besides, one of these practical applications is to optimally schedule the flights for residual stranded citizens due to COVID-19. The problem is defined for a decision maker who wants to schedule a multiple stepped trip for a subset of candidate airports to return the maximum number of residuals of stranded citizens remaining in listed airports while comprising the minimization of the total travelled distances for a carrying airplane. A nonlinear binary mathematical programming model for the problem is introduced with a real application case study, the case study is solved using (DBGSK).

Author(s):  
Prachi Agrawal ◽  
Talari Ganesh ◽  
Ali Wagdy Mohamed

AbstractThis article proposes a novel binary version of recently developed Gaining Sharing knowledge-based optimization algorithm (GSK) to solve binary optimization problems. GSK algorithm is based on the concept of how humans acquire and share knowledge during their life span. A binary version of GSK named novel binary Gaining Sharing knowledge-based optimization algorithm (NBGSK) depends on mainly two binary stages: binary junior gaining sharing stage and binary senior gaining sharing stage with knowledge factor 1. These two stages enable NBGSK for exploring and exploitation of the search space efficiently and effectively to solve problems in binary space. Moreover, to enhance the performance of NBGSK and prevent the solutions from trapping into local optima, NBGSK with population size reduction (PR-NBGSK) is introduced. It decreases the population size gradually with a linear function. The proposed NBGSK and PR-NBGSK applied to set of knapsack instances with small and large dimensions, which shows that NBGSK and PR-NBGSK are more efficient and effective in terms of convergence, robustness, and accuracy.


2014 ◽  
Vol 13 (01) ◽  
pp. 101-135 ◽  
Author(s):  
MUKESH KUMAR MEHLAWAT ◽  
PANKAJ GUPTA

In this paper, we develop a hybrid bi-objective credibility-based fuzzy mathematical programming model for portfolio selection under fuzzy environment. To deal with imprecise parameters, we use a hybrid credibility-based approach that combines the expected value and chance constrained programming techniques. The model simultaneously maximizes the portfolio return and minimizes the portfolio risk. We also consider an additional important criterion, namely, portfolio liquidity as a constraint in the model to make it better suited for practical applications. The proposed fuzzy optimization model is solved using a two-phase approach. An empirical study is included to demonstrate applicability of the proposed model and the solution approach in real-world applications of portfolio selection.


2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

This article proposes a novel binary version of recently developed Gaining-Sharing knowledge-based optimization algorithm (GSK) to solve binary optimization problems is proposed. GSK algorithm is based on the concept of how humans acquire and share knowledge during their life span. Discrete Binary version of GSK named novel binary Gaining Sharing knowledge-based optimization algorithm (DBGSK) depends on mainly two binary stages: binary junior gaining sharing stage and binary senior gaining sharing stage with knowledge factor 1. These two stages enable DBGSK for exploring and exploitation of the search space efficiently and effectively to solve problems in binary space.An improved scheduling of the technical counselling process for utilization of the electricity from solar energy power stations is introduced. The scheduling aims at achieving the best utilization of the available day time for the counselling group,n this regard,a new application problem is presented, which is called a Travelling Counselling Problem (TCP).A Nonlinear Binary Model is introduced with a real application


2012 ◽  
Vol 52 (No. 2) ◽  
pp. 51-66 ◽  
Author(s):  
P. Havlík ◽  
F. Jacquet ◽  
Boisson J-M ◽  
S. Hejduk ◽  
P. Veselý

BEGRAB_PRO.1 – a mathematical programming model for BEef and GRAssland Biodiversity PRoduction Optimisation – elaborated for analysis of organic suckler cow farms in the Protected Landscape Area White Carpathians, the Czech Republic, is presented and applied to the analysis of jointness between several environmental goods. In this way, the paper complements recent studies on jointness between commodities and non-commodities. If these goods are joint in production, agri-environmental payments must be carefully designed because they do not influence only production of the environmental good they are intended for but also the production of other environmental goods. If jointness is negative, any increase in the payment for an environmental good leads to a decrease in production of other environmental goods.


2015 ◽  
Vol 21 (4) ◽  
pp. 596-625 ◽  
Author(s):  
M. M. E. ALEMANY ◽  
A. A. ◽  
Andrés BOZA ◽  
Vicente S. FUERTES-MIQUEL

In ceramic companies, uncertainty in the tone and gage obtained in first quality units of the same finished good (FG) entails frequent discrepancies between planned homogeneous quantities and real ones. This fact can lead to a shortage situation in which certain previously committed customer orders cannot be served because there are not enough homogeneous units of a specific FG (i.e., with the same tone and gage). In this paper, a Model-Driven Decision Support System (DSS) is proposed to reassign the actual homogeneous stock and the planned homogeneous sublots to already committed orders under uncertainty by means of a mathematical programming model (SP-Model). The DSS functionalities enable ceramic decision makers to generate different solutions by changing model options. Uncertainty in the planned homogeneous quantities, and any other type of uncertainty, is managed via scenarios. The robustness of each solution is tested in planned and real situations with another DSS functionality based on another mathematical programming model (ASP-Model). With these DSS features, the ceramic decision maker can choose in a friendly fashion the orders to be served with the current homogeneous stock and the future uncertainty homogeneous supply to better achieve a balance between the maximisation of multiple objectives and robustness.


2013 ◽  
Vol 4 (5) ◽  
pp. 236-241
Author(s):  
Yin-Yann Chen ◽  
Hsiao-Yao Fan .

A multi-site order fulfillment-planning model for the thin film transistor–liquid crystal display (TFT-LCD) panel industry is proposed. The order allocation problem is solved using a mathematical programming model considering practical characteristics, including product structures, customer preferences, alternative bill-of-material, and production constraints. A practical global corporation case in Taiwan will be employed to testify the feasibility of the proposed order fulfillment-planning model. Besides, the adaptability and comparison of different planning approaches in an environment of various market demands are discussed. Through the analysis of experiments, the proposed mathematical programming model is found to be better than the current popular method.


2019 ◽  
Vol 173 ◽  
pp. 218-232 ◽  
Author(s):  
Mostafa Mardani Najafabadi ◽  
Saman Ziaee ◽  
Alireza Nikouei ◽  
Mahmoud Ahmadpour Borazjani

2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

This article proposes a novel binary version of recently developed Gaining-Sharing knowledge-based optimization algorithm (GSK) to solve binary optimization problems is proposed. GSK algorithm is based on the concept of how humans acquire and share knowledge during their life span. Discrete Binary version of GSK named novel binary Gaining Sharing knowledge-based optimization algorithm (DBGSK) depends on mainly two binary stages: binary junior gaining sharing stage and binary senior gaining sharing stage with knowledge factor 1. These two stages enable DBGSK for exploring and exploitation of the search space efficiently and effectively to solve problems in binary space.An improved scheduling of the technical counselling process for utilization of the electricity from solar energy power stations is introduced. The scheduling aims at achieving the best utilization of the available day time for the counselling group,n this regard,a new application problem is presented, which is called a Travelling Counselling Problem (TCP).A Nonlinear Binary Model is introduced with a real application


Sign in / Sign up

Export Citation Format

Share Document