scholarly journals Improved Invasive Weed Optimization Algorithm for Global Maximum Power Point Tracking of PV Array Under Partial Shading Conditions

2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

Photovoltaic (PV) array under partial shading conditions (PSCs) has several maximum power points (MPPs) on the power-voltage curve of the PV array. These points; have a unique global peak (GP) and the others are local peaks (LPs). This paper aims to study an improved version of a heuristic optimization technique namely, Invasive Weed Optimization (IWO) to track the global maximum power point (GMPP) of a PV array which is an important issue. The proposed improved IWO (IIWO) algorithm modifies IWO to speed up the convergence and make the system more efficient. In addition to study the effect of changing input parameters of IIWO on its performance. An overall statistical evaluation of IIWO, with standard IWO and Particle Swarm Optimization (PSO) is executed under different shading conditions. The simulation results show that IIWO has faster and better convergence as it can reach the GMPP in less time compared with other techniques.

Author(s):  
Salmi Hassan ◽  
Badri Abdelmajid ◽  
Zegrari Mourad ◽  
Sahel Aicha ◽  
Baghdad Abdenaceur

<p>Maximum power point tracking (MPPT) algorithms are employed in photovoltaic (PV) systems to make full utilization of PV array output power, which have a complex relationship between ambient temperature and solar irradiation. The power-voltage characteristic of PV array operating under partial shading conditions (PSC) exhibits multiple local maximum power points (LMPP). In this paper, an advanced algorithm has been presented to track the global maximum power point (GMPP) of PV. Compared with the Perturb and Observe (P&amp;O) techniques, the algorithm proposed the advantages of determining the location of GMPP whether partial shading is present.</p>


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2521
Author(s):  
Alfredo Gil-Velasco ◽  
Carlos Aguilar-Castillo

There are multiples conditions that lead to partial shading conditions (PSC) in photovoltaic systems (PV). Under these conditions, the harvested energy decreases in the PV system. The maximum power point tracking (MPPT) controller aims to harvest the greatest amount of energy even under partial shading conditions. The simplest available MPPT algorithms fail on PSC, whereas the complex ones are effective but require high computational resources and experience in this type of systems. This paper presents a new MPPT algorithm that is simple but effective in tracking the global maximum power point even in PSC. The simulation and experimental results show excellent performance of the proposed algorithm. Additionally, a comparison with a previously proposed algorithm is presented. The comparison shows that the proposal in this paper is faster in tracking the maximum power point than complex algorithms.


Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 202 ◽  
Author(s):  
Jirada Gosumbonggot ◽  
Goro Fujita

Photovoltaic (PV) technology has been the focus of interest due to its nonpolluting operation and good installation flexibility. Irradiation and temperature are the two main factors which impact the performance of the PV system. Accordingly, when partial shading from surroundings occurs, its incident shadow diminishes the irradiation and reduces the generated power. Since the conventional maximum power point tracking methods (MPPT) could not distinguish the global maximum power of the power-voltage (P-V) characteristic curve, a new tracking method needs to be developed. This paper proposes a global maximum power point tracking method using shading detection and the trend of slopes from each section of the curve. Full mathematical equations and algorithms are presented. Simulations based on real weather data were performed both in short-term and long-term studies. Moreover, this paper also presents the experiment using the DC-DC synchronous and interleaved boost converter. Results from the simulation show an accurate tracking result and the system can enhance the total energy generated by 8.55% compared to the conventional scanning method. Moreover, the experiment also confirms the success of the proposed tracking algorithm.


Sign in / Sign up

Export Citation Format

Share Document