A Timeline Optimization Approach of Green Requirement Engineering Framework for Efficient Categorized Natural Language Documents in Non-Functional Requirements

2021 ◽  
Vol 8 (1) ◽  
pp. 21-37
Author(s):  
K. Mahalakshmi ◽  
Udayakumar Allimuthu ◽  
L Jayakumar ◽  
Ankur Dumka

The system's functional requirements (FR) and non-functional requirements (NFR) are derived from the software requirements specification (SRS). The requirement specification is challenging in classification process of FR and NFR requirements. To overcome these issues, the work contains various significant contributions towards SRS, such as green requirements engineering (GRE), to achieve the natural language processing, requirement specification, extraction, classification, requirement specification, feature selection, and testing the quality attributes improvement of NFRs. In addition to this, the test pad-based quality study to determine accuracy, quality, and condition providence to the classification of non-functional requirements (NFR) is also carried out. The resulted classification accuracy was implemented in the MATLAB R2014; the resulted graphical record shows the efficient non-functional requirements (NFR) classification with green requirements engineering (GRE) framework.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Olga Majewska ◽  
Charlotte Collins ◽  
Simon Baker ◽  
Jari Björne ◽  
Susan Windisch Brown ◽  
...  

Abstract Background Recent advances in representation learning have enabled large strides in natural language understanding; However, verbal reasoning remains a challenge for state-of-the-art systems. External sources of structured, expert-curated verb-related knowledge have been shown to boost model performance in different Natural Language Processing (NLP) tasks where accurate handling of verb meaning and behaviour is critical. The costliness and time required for manual lexicon construction has been a major obstacle to porting the benefits of such resources to NLP in specialised domains, such as biomedicine. To address this issue, we combine a neural classification method with expert annotation to create BioVerbNet. This new resource comprises 693 verbs assigned to 22 top-level and 117 fine-grained semantic-syntactic verb classes. We make this resource available complete with semantic roles and VerbNet-style syntactic frames. Results We demonstrate the utility of the new resource in boosting model performance in document- and sentence-level classification in biomedicine. We apply an established retrofitting method to harness the verb class membership knowledge from BioVerbNet and transform a pretrained word embedding space by pulling together verbs belonging to the same semantic-syntactic class. The BioVerbNet knowledge-aware embeddings surpass the non-specialised baseline by a significant margin on both tasks. Conclusion This work introduces the first large, annotated semantic-syntactic classification of biomedical verbs, providing a detailed account of the annotation process, the key differences in verb behaviour between the general and biomedical domain, and the design choices made to accurately capture the meaning and properties of verbs used in biomedical texts. The demonstrated benefits of leveraging BioVerbNet in text classification suggest the resource could help systems better tackle challenging NLP tasks in biomedicine.


2020 ◽  
Author(s):  
Jared Ucherek ◽  
Tesleem Lawal ◽  
Matthew Prinz ◽  
Lisa Li ◽  
Pradeepkumar Ashok ◽  
...  

2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Lina Sulieman ◽  
Jing He ◽  
Robert Carroll ◽  
Lisa Bastarache ◽  
Andrea Ramirez

Abstract Electronic Health Records (EHR) contain rich data to identify and study diabetes. Many phenotype algorithms have been developed to identify research subjects with type 2 diabetes (T2D), but very few accurately identify type 1 diabetes (T1D) cases or more rare forms of monogenic and atypical metabolic presentations. Polygenetic risk scores (PRS) quantify risk of a disease using common genomic variants well for both T1D and T2D. In this study, we apply validated phenotyping algorithms to EHRs linked to a genomic biobank to understand the independent contribution of PRS to classification of diabetes etiology and generate additional novel markers to distinguish subtypes of diabetes in EHR data. Using a de-identified mirror of medical center’s electronic health record, we applied published algorithms for T1D and T2D to identify cases, and used natural language processing and chart review strategies to identify cases of maturity onset diabetes of the young (MODY) and other more rare presentations. This novel approach included additional data types such as medication sequencing, ratio and temporality of insulin and non-insulin agents, clinical genetic testing, and ratios of diagnostic codes. Chart review was performed to validate etiology. To calculate PRS, we used genome wide genotyping from our BioBank, the de-identified biobank linking EHR to genomic data using coefficients of 65 published T1D SNPS and 76,996 T2D SNPS using PLINK in Caucasian subjects. In the dataset, we identified 82,238 cases of T2D but only 130 cases of T1D using the most cited published algorithms. Adding novel structured elements and natural language processing identified an additional 138 cases of T1D and distinguished 354 cases as MODY. Among over 90,000 subjects with genotyping data available, we included 72,624 Caucasian subjects since PRS coefficients were generated in Caucasian cohorts. Among those subjects, 248, 6,488, and 21 subjects were identified as T1D, T2D, and MODY subjects respectively in our final PRS cohort. The T1D PRS did significantly discriminate well between cases and controls (Mann-Whitney p-value is 3.4 e-17). The PRS for T2D did not significantly discriminate between cases and controls using published algorithms. The atypical case count was too low to calculate PRS discrimination. Calculation of the PRS score was limited by quality inclusion of variants available, and discrimination may improve in larger data sets. Additionally, blinded physician case review is ongoing to validate the novel classification scheme and provide a gold standard for machine learning approaches that can be applied in validation sets.


Sign in / Sign up

Export Citation Format

Share Document