risk scores
Recently Published Documents


TOTAL DOCUMENTS

4470
(FIVE YEARS 3331)

H-INDEX

70
(FIVE YEARS 32)

2022 ◽  
Vol 55 ◽  
pp. 86-95
Author(s):  
Giuseppe Fanelli ◽  
Katharina Domschke ◽  
Alessandra Minelli ◽  
Massimo Gennarelli ◽  
Paolo Martini ◽  
...  

2022 ◽  
pp. 108705472110664
Author(s):  
Lucy Riglin ◽  
Robyn E. Wootton ◽  
Lucy A. Livingston ◽  
Jessica Agnew-Blais ◽  
Louise Arseneault ◽  
...  

Objective: We investigated whether “late-onset” ADHD that emerges in adolescence/adulthood is similar in risk factor profile to: (1) child-onset ADHD, but emerges later because of scaffolding/compensation from childhood resources; and (2) depression, because it typically onsets in adolescence/adulthood and shows symptom and genetic overlaps with ADHD. Methods: We examined associations between late-onset ADHD and ADHD risk factors, cognitive tasks, childhood resources and depression risk factors in a population-based cohort followed-up to age 25 years ( N=4224–9764). Results: Parent-rated late-onset ADHD was like child-onset persistent ADHD in associations with ADHD polygenic risk scores and cognitive task performance, although self-rated late-onset ADHD was not. Late-onset ADHD was associated with higher levels of childhood resources than child-onset ADHD and did not show strong evidence of association with depression risk factors. Conclusions: Late-onset ADHD shares characteristics with child-onset ADHD when parent-rated, but differences for self-reports require investigation. Childhood resources may delay the onset of ADHD.


Diagnostics ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 212
Author(s):  
Sunmin Park ◽  
Chaeyeon Kim ◽  
Xuangao Wu

Background: Insulin resistance is a common etiology of metabolic syndrome, but receiver operating characteristic (ROC) curve analysis shows a weak association in Koreans. Using a machine learning (ML) approach, we aimed to generate the best model for predicting insulin resistance in Korean adults aged > 40 of the Ansan/Ansung cohort using a machine learning (ML) approach. Methods: The demographic, anthropometric, biochemical, genetic, nutrient, and lifestyle variables of 8842 participants were included. The polygenetic risk scores (PRS) generated by a genome-wide association study were added to represent the genetic impact of insulin resistance. They were divided randomly into the training (n = 7037) and test (n = 1769) sets. Potentially important features were selected in the highest area under the curve (AUC) of the ROC curve from 99 features using seven different ML algorithms. The AUC target was ≥0.85 for the best prediction of insulin resistance with the lowest number of features. Results: The cutoff of insulin resistance defined with HOMA-IR was 2.31 using logistic regression before conducting ML. XGBoost and logistic regression algorithms generated the highest AUC (0.86) of the prediction models using 99 features, while the random forest algorithm generated a model with 0.82 AUC. These models showed high accuracy and k-fold values (>0.85). The prediction model containing 15 features had the highest AUC of the ROC curve in XGBoost and random forest algorithms. PRS was one of 15 features. The final prediction models for insulin resistance were generated with the same nine features in the XGBoost (AUC = 0.86), random forest (AUC = 0.84), and artificial neural network (AUC = 0.86) algorithms. The model included the fasting serum glucose, ALT, total bilirubin, HDL concentrations, waist circumference, body fat, pulse, season to enroll in the study, and gender. Conclusion: The liver function, regular pulse checking, and seasonal variation in addition to metabolic syndrome components should be considered to predict insulin resistance in Koreans aged over 40 years.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Shabab Noor Islam ◽  
Tanvir Ahammed ◽  
Aniqua Anjum ◽  
Olayan Albalawi ◽  
Md. Jamal Uddin

Abstract Background Mendelian randomization (MR) studies using Genetic risk scores (GRS) as an instrumental variable (IV) have increasingly been used to control for unmeasured confounding in observational healthcare databases. However, proper reporting of methodological issues is sparse in these studies. We aimed to review published papers related to MR studies and identify reporting problems. Methods We conducted a systematic review using the clinical articles published between 2009 and 2019. We searched PubMed, Scopus, and Embase databases. We retrieved information from every MR study, including the tests performed to evaluate assumptions and the modelling approach used for estimation. Using our inclusion/exclusion criteria, finally, we identified 97 studies to conduct the review according to the PRISMA statement. Results Only 66 (68%) of the studies empirically verified the first assumption (Relevance assumption), and 40 (41.2%) studies reported the appropriate tests (e.g., R2, F-test) to investigate the association. A total of 35.1% clearly stated and discussed theoretical justifications for the second and third assumptions. 30.9% of the studies used a two-stage least square, and 11.3% used the Wald estimator method for estimating IV. Also, 44.3% of the studies conducted a sensitivity analysis to illuminate the robustness of estimates for violations of the untestable assumptions. Conclusions We found that incompleteness of the justification of the assumptions for the instrumental variable in MR studies was a common problem in our selected studies. This may misdirect the findings of the studies.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 654
Author(s):  
Dan Komosny ◽  
Saeed Ur Rehman

COVID-19 has disrupted every field of life and education is not immune to it. Student learning and examinations moved on-line on a few weeks notice, which has created a large workload for academics to grade the assessments and manually detect students’ dishonesty. In this paper, we propose a method to automatically indicate cheating in unproctored on-line exams, when somebody else other than the legitimate student takes the exam. The method is based on the analysis of the student’s on-line traces, which are logged by distance education systems. We work with customized IP geolocation and other data to derive the student’s cheating risk score. We apply the method to approx. 3600 students in 22 courses, where the partial or final on-line exams were unproctored. The found cheating risk scores are presented along with examples of indicated cheatings. The method can be used to select students for knowledge re-validation, or to compare student cheating across courses, age groups, countries, and universities. We compared student cheating risk scores between four academic terms, including two terms of university closure due to COVID-19.


Diabetologia ◽  
2022 ◽  
Author(s):  
Katarzyna Dziopa ◽  
Folkert W. Asselbergs ◽  
Jasmine Gratton ◽  
Nishi Chaturvedi ◽  
Amand F. Schmidt

Abstract Aims/hypothesis We aimed to compare the performance of risk prediction scores for CVD (i.e., coronary heart disease and stroke), and a broader definition of CVD including atrial fibrillation and heart failure (CVD+), in individuals with type 2 diabetes. Methods Scores were identified through a literature review and were included irrespective of the type of predicted cardiovascular outcome or the inclusion of individuals with type 2 diabetes. Performance was assessed in a contemporary, representative sample of 168,871 UK-based individuals with type 2 diabetes (age ≥18 years without pre-existing CVD+). Missing observations were addressed using multiple imputation. Results We evaluated 22 scores: 13 derived in the general population and nine in individuals with type 2 diabetes. The Systemic Coronary Risk Evaluation (SCORE) CVD rule derived in the general population performed best for both CVD (C statistic 0.67 [95% CI 0.67, 0.67]) and CVD+ (C statistic 0.69 [95% CI 0.69, 0.70]). The C statistic of the remaining scores ranged from 0.62 to 0.67 for CVD, and from 0.64 to 0.69 for CVD+. Calibration slopes (1 indicates perfect calibration) ranged from 0.38 (95% CI 0.37, 0.39) to 0.74 (95% CI 0.72, 0.76) for CVD, and from 0.41 (95% CI 0.40, 0.42) to 0.88 (95% CI 0.86, 0.90) for CVD+. A simple recalibration process considerably improved the performance of the scores, with calibration slopes now ranging between 0.96 and 1.04 for CVD. Scores with more predictors did not outperform scores with fewer predictors: for CVD+, QRISK3 (19 variables) had a C statistic of 0.68 (95% CI 0.68, 0.69), compared with SCORE CVD (six variables) which had a C statistic of 0.69 (95% CI 0.69, 0.70). Scores specific to individuals with diabetes did not discriminate better than scores derived in the general population: the UK Prospective Diabetes Study (UKPDS) scores performed significantly worse than SCORE CVD (p value <0.001). Conclusions/interpretation CVD risk prediction scores could not accurately identify individuals with type 2 diabetes who experienced a CVD event in the 10 years of follow-up. All 22 evaluated models had a comparable and modest discriminative ability. Graphical abstract


2022 ◽  
Vol 23 (2) ◽  
pp. 912
Author(s):  
Javier Saenz-Medina ◽  
Mercedes Muñoz ◽  
Claudia Rodriguez ◽  
Ana Sanchez ◽  
Cristina Contreras ◽  
...  

An epidemiological relationship between urolithiasis and cardiovascular diseases has extensively been reported. Endothelial dysfunction is an early pathogenic event in cardiovascular diseases and has been associated with oxidative stress and low chronic inflammation in hypertension, coronary heart disease, stroke or the vascular complications of diabetes and obesity. The aim of this study is to summarize the current knowledge about the pathogenic mechanisms of urolithiasis in relation to the development of endothelial dysfunction and cardiovascular morbidities. Methods: A non-systematic review has been performed mixing the terms “urolithiasis”, “kidney stone” or “nephrolithiasis” with “cardiovascular disease”, “myocardial infarction”, “stroke”, or “endothelial dysfunction”. Results: Patients with nephrolithiasis develop a higher incidence of cardiovascular disease with a relative risk estimated between 1.20 and 1.24 and also develop a higher vascular disease risk scores. Analyses of subgroups have rendered inconclusive results regarding gender or age. Endothelial dysfunction has also been strongly associated with urolithiasis in clinical studies, although no systemic serum markers of endothelial dysfunction, inflammation or oxidative stress could be clearly related. Analysis of urine composition of lithiasic patients also detected a higher expression of proteins related to cardiovascular disease. Experimental models of hyperoxaluria have also found elevation of serum endothelial dysfunction markers. Conclusions: Endothelial dysfunction has been strongly associated with urolithiasis and based on the experimental evidence, should be considered as an intermediate and changeable feature between urolithiasis and cardiovascular diseases. Oxidative stress, a key pathogenic factor in the development of endothelial dysfunction has been also pointed out as an important factor of lithogenesis. Special attention must be paid to cardiovascular morbidities associated with urolithiasis in order to take advantage of pleiotropic effects of statins, angiotensin receptor blockers and allopurinol.


2022 ◽  
Author(s):  
Mark Ebell ◽  
Roya Hamadani ◽  
Autumn Kieber-Emmons

Importance Outpatient physicians need guidance to support their clinical decisions regarding management of patients with COVID-19, in particular whether to hospitalize a patient and if managed as an outpatient, how closely to follow them. Objective To develop and prospectively validate a clinical prediction rule to predict the likelihood of hospitalization for outpatients with COVID-19 that does not require laboratory testing or imaging. Design Derivation and temporal validation of a clinical prediction rule, and prospective validation of two externally derived clinical prediction rules. Setting Primary and Express care clinics in a Pennsylvania health system. Participants Patients 12 years and older presenting to outpatient clinics who had a positive polymerase chain reaction test for COVID-19. Main outcomes and measures Classification accuracy (percentage in each risk group hospitalized) and area under the receiver operating characteristic curve (AUC). Results Overall, 7.4% of outpatients in the early derivation cohort (5843 patients presenting before 3/1/21) and 5.5% in the late validation cohort (3806 patients presenting 3/1/21 or later) were ultimately hospitalized. We developed and temporally validated three risk scores that all included age, dyspnea, and the presence of comorbidities, adding respiratory rate for the second score and oxygen saturation for the third. All had very good overall accuracy (AUC 0.77 to 0.78) and classified over half of patients in the validation cohort as very low risk with a 1.7% or lower likelihood of hospitalization. Two externally derived risk scores identified more low risk patients, but with a higher overall risk of hospitalization (2.8%). Conclusions and relevance Simple risk scores applicable to outpatient and telehealth settings can identify patients with very low (1.6% to 1.7%), low (5.2% to 5.9%), moderate (14.7% to 15.6%), and high risk (32.0% to 34.2%) of hospitalization. The Lehigh Outpatient COVID Hospitalization (LOCH) risk score is available online as a free app: https://ebell-projects.shinyapps.io/LehighRiskScore/.


Sign in / Sign up

Export Citation Format

Share Document